INTEGRATED LEARNING IN THE MATHEMATICS AND NATURAL SCIENCES LEARNING PROCESS IN HIGH SCHOOL
DOI:
https://doi.org/10.17770/sie2019vol2.3929Keywords:
Integration process, integrated learning content, integrated skills, integration modelsAbstract
The article discusses the integrated process of learning mathematics at secondary school. The content of teaching mathematics must be arranged in such a way that the student develops an overall understanding of the world. The aim of the article is to emphasize the depth of comprehension of the content of the subject of the student’s interest, because based on the understanding of the content of the subject, new knowledge will be integrated and new skills will be developed that the student will be able to transfer to other subjects by solving problem situations. The topicality of the article is related to the integration approach, that the main focus is not to focus on the content of the subjects of mathematics and physics, but on the scientific processes that unite the contents of these subjects. Theoretical basis of the research is the system theory, which is based on the approach of learning cognition and constructivism. In the research, students' complex tests and questionnaires with open questions were used for data acquisition. The article uses a case study design to analyse data.
Downloads
References
Albrehta, D. (2001) Didaktika [Didactic]. Rīga: RaKa.
Bēkons, F. (1989) Jaunais organons [Novum Organum]. Rīga: Zvaigzne.
Broks, A. (2000) Izglītības sistemoloģija [Systemology of Education]. Rīga: RaKa.
Broks, A. (2006) Ontodidaktika izglītības satura attīstībai. Pieejams: http://blogi.lu.lv/broks/files/2010/03/A.Broks_SkNr.582006.pdf
Capra, F. (1975) The Tao of physics. Retrieved from:http://www.vielewelten.at/pdf_en/capra.pdf
Čehlova, Z., & Grinpauks, Z. (2003) Skolēnu integratīvo prasmju veidošana. Rīga: RaKa.
Geidžs, N. L., & Berliners, D.C. (1999) Pedagoģiskā psiholoģija [Educational psychology]. Rīga: Zvaigzne ABC.
Geske, A., Grīnfelds, A., Kangro, A., & Kiseļova, R. (2012) Latvija OECD Starptautiskajā skolēnu novērtēšanas programmā 2012 – pirmie rezultāti un secinājumi. Pieejams: https://www.ipi.lu.lv/fileadmin/_migrated/content_uploads/Latvija_SSNP_2012_pirmie_rezultati_un_secinajumi.pdf
Kiray, S.A. (2012) A new model for the integration of science and mathematics: The balance model. Retrieved from: https://files.eric.ed.gov/fulltext/ED546468.pdf
Kurt, K., & Pehlivan, M. (2013) Integrated Programs for Science and Mathematics: Review of Related Literature. Retrieved from: https://eric.ed.gov/?id=ED543277
Lāslo, E. (2014) Ceļvedis pasaules pārmaiņās [Quantum Shift in the Global Brain]. Rīga: Jumava.
Moriyama, J., Suzuki, T., Miyazaki, M., & Sakakibara, Y. (2007) Integrated Learning of "Modeling" through Mathematics, Science and Technology. Retrieved from: https://www.iteea.org/File.aspx?id=86696&v=4e822661
Namsone, D. (2018) Kolektīvā monogrāfija. Mācīšanās lietpratībai. LU Akadēmiskais apgāds. Pieejams: https://www.siic.lu.lv/fileadmin/user_upload/lu_portal/projekti/siic/Kolektiva_monografija/Macisanas_Lietpratibai.pdf
Niss, M. (2002) Mathematical competencies and the learning of mathematics: the Danish komproject. Retrieved from: http://www.math.chalmers.se/Math/Grundutb/CTH/mve375/1112/docs/KOMkompetenser.pdf
Pipere et.al, (2016) Pētniecība: teorija un prakse [Research: Theory and Practice]. Rīga: RaKa.
Rath, G. (2006). Auseinandergelebt? Physik und Mathematik. Probleme und Lösungsansätze zur Koordination. Retrieved from: https://pluslucis.univie.ac.at/PlusLucis/061/s0913.pdf
Reihenova, A. (2018a) Vidusskolēnu domāšanas veidi matemātikas mācīšanās procesā. Pieejams: Society. Integration. Education. Proceedings of the International Scientific Conference . 2018, Volume II, 405-418.
Reihenova, A. (2018b) Self-motivated Secondary School Student in Learning Mathematics. The 60st International Scientific Conference of Daugavpils University. Retrieved from: https://dukonference.lv/files/DU%2060%20starpt%20zinatn%20konf%20tezes_DRAFT.pdf
Reihenova, A. (2018c) Mācību pētnieciskās prasmes matemātikas stundās vidusskolā [Secondary school students' types of thinking in learning maths]. Retrieved from: http://journals.rta.lv/index.php/PSPI/issue/view/102
Riegel, C., Scherr, A., & Stauber, B. (2010) Transdisziplinäre Jugendforschung. Grundlagen und Forschungskonzepte. VS Verlag.
Robinsons, K. (2013) NE tikai AR PRĀTU [Out of our Minds]. Rīga: Zvaigzne ABC.
Sawyer, R.K. (2008) Optimising learning implications of learning sciences research. Retrieved from: http://www.oecd.org/site/educeri21st/40554221.pdf
Skola 2030: Atbalsts mācību pieejas maiņai [School 2030: Description of Educational Curriculum and Learning Approach]. R.: VISC. Pieejams: https://www.skola2030.lv/
Siliņš, E. I. (2008) Lielo patiesību meklējumi [Searching for the Great Truths]. Rīga: Jumava.
Šteinberga, A. (2013) Pedagoģiskā psiholoģija [Pedagogical Psychology]. Rīga: RaKa.
Ulm, V. (2010) Systemic innovations of mathematics education with dynamic worksheets as catalysts. Retrieved from: http://ife.ens-lyon.fr/publications/edition-electronique/cerme6/wg7-24-ulm.pdf
Vilbers, K. (2010) Visaptverošā teorija [A Theory of Everything]. Rīga: Jumava.
Zeps, D. (2007). Par matemātikas dabu. Par matemātiku un realitāti. Pieejams: https://www.academia.edu/2739591/Par_matem%C4%81tikas_dabu._Par_matem%C4%81tiku_un_realit%C4%81ti?auto=download
Zeps, D. (2009) Matemātika un fizika ir viens un tas pats. Ceļā uz tās vienkāršošanos.
Žogla, I. (2001) Didaktikas teorētiskie pamati [Theoretical Background of Didactic]. Rīga: Zvaigzne.