STROKE PARAMETER ANALYSIS PERFORMING A COMPETITION DISTANCE (200 M) ON WATER

Authors

  • Martins Veispals Latvian Academy of Sport Education (LV)
  • Antra Gulbe Latvian Academy of Sport Education (LV)

DOI:

https://doi.org/10.17770/sie2023vol2.7118

Keywords:

canoe sprint, force measurements, force of the stroke, power of the stroke, stroke analysis

Abstract

Canoe sprint is a water sport (under natural conditions, it takes place on water); therefore, for the most part, research is carried out under laboratory conditions, when the load is performed on various special exercise machines (ergometers) that try to simulate natural conditions as closely as possible since doing research in natural conditions is very challenging. However, technological development and recently available specific devices allow to go forward and overcome these challenges. The aim of the research is to provide information on stroke parameters for a 200 m distance with maximum effort in natural conditions of the sport – on water, provided by the only device currently available on the market that measures the power and force applied to the stroke, and result comparison with similar research done by other authors. Dynamometry was used as the primary method to obtain indicators on power and force applied to the paddle, using a specialized device – canoe sprint power meter (One Giant Leap, Nelson, New Zealand). The average force value to the brace in a 200 m distance between all 87 braces was found to be 456.2 ± 8.7 N.
Supporting Agencies
Latvian Academy of Sport Education

References

Aitken, D. A., & Neal, R. J. (1992). An on-water analysis system for quantifying stroke force characteristics during kayak events. Journal of Applied Biomechanics, 8(2), 165-173. DOI: https://doi.org/10.1123/ijsb.8.2.165

Baker, J. (1998). Evaluation of biomechanic performance related factors with on-water tests. International seminar on kayak-canoe coaching and science (pp. 50-66). University of Gent Press: Gent, Belgium. Retrieved from: https://ojs.ub.uni-konstanz.de/cpa/article/view/5171/4747

Baldari, C., Bonavolontà, V., Emerenziani, G. P., Gallotta, M. C., Silva, A. J., & Guidetti, L. (2009). Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus analyzer. European journal of applied physiology, 107(1), 105-111. DOI: https://doi.org/10.1007/s00421-009-1107-5

Baudouin, A., & Hawkins, D. (2002). A biomechanical review of factors affecting rowing performance. British journal of sports medicine, 36(6), 396-402. DOI: 10.1136/bjsm.36.6.396

Bjerkefors, A., Tarassova, O., Rosén, J. S., Zakaria, P., & Arndt, A. (2018). Three-dimensional kinematic analysis and power output of elite flat-water kayakers. Sports biomechanics, 17(3), 414-427. DOI: 10.1080/14763141.2017.1359330

Bonaiuto, V., Gatta, G., Romagnoli, C., Boatto, P., Lanotte, N., & Annino, G. (2020). A pilot study on the e-kayak system: A wireless DAQ suited for performance analysis in flatwater sprint kayaks. Sensors, 20(2), 542. DOI: https://doi.org/10.3390/s20020542

Brown, M., Lauder, M., & Dyson, R. (2010). Activation and contribution of trunk and leg musculature to force production during on-water sprint kayak performance. ISBS-Conference Proceedings Archive. Retrieved from: https://ojs.ub.uni-konstanz.de/cpa/article/view/4417/4107

Gomes, B. B., Ramos, N. V., Conceição, F. A., Sanders, R. H., Vaz, M. A., & Vilas-Boas, J. P. (2015). Paddling force profiles at different stroke rates in elite sprint kayaking. Journal of Applied Biomechanics, 31(4), 258-263. DOI: 10.1123/jab.2014-0114

Gomes, B., Viriato, N., Sanders, R., Conceição, F., Vilas-Boas, J. P., & Vaz, M. (2011). Analysis of the on-water paddling force profile of an elite kayaker. ISBS-conference proceedings archive. Retrieved from: https://ojs.ub.uni-konstanz.de/cpa/article/view/4822

Hogan, C., Binnie, M. J., Doyle, M., Lester, L., & Peeling, P. (2019). Comparison of training monitoring and prescription methods in sprint kayaking. International journal of sports physiology and performance, 15(5), 654-662. DOI: 10.1123/ijspp.2019-0190

Jackson, P. S. (1995). Performance prediction for Olympic kayaks. Journal of sports Sciences, 13(3), 239-245. DOI: https://doi.org/10.1080/02640419508732233

Kendal, S. J., & Sanders, R. H. (1992). The technique of elite flatwater kayak paddlers using the wing paddle. Journal of Applied Biomechanics, 8(3), 233-250. DOI: https://doi.org/10.1123/ijsb.8.3.233

Kong, P. W., Tay, C. S., & Pan, J. W. (2020). Application of Instrumented Paddles in Measuring On-Water Kinetics of Front and Back Paddlers in K2 Sprint Kayaking Crews of Various Ability Levels. Sensors, 20(21), 6317. DOI: 10.3390/s20216317

Macdermid, P. W., & Fink, P. W. (2017). The validation of a paddle power meter for slalom kayaking. Sports medicine international open, 1(2), E50. DOI: 10.1055/s-0043-100380

Mann, R. V., & Kearney, J. T. (1980). A biomechanical analysis of the Olympic-style flatwater kayak stroke. Medicine and Science in Sports and Exercise, 12(3), 183-188. Retrieved from: https://journals.lww.com/acsm-msse/Abstract/1980/23000/A_biomechanical_analysis_of_the_Olympic_style.10.aspx

Michael, J. S., Smith, R., & Rooney, K. B. (2009). Determinants of kayak paddling performance. Sports Biomechanics, 8(2), 167-179. DOI: https://doi.org/10.1080/14763140902745019

Mononen, H., & Viitasalo, J. (1995). Stroke parameters and kayak speed during 200m kayaking. Proceedings of the XVth Congress of the International Society of Biomechanics, Jyvaskyla, Finland (pp. 632-633).

Mononen, H., Kolehmainen, E., Salonen, M., & Viitasalo, J. (1994). Paddle force characteristics during 200 m Kayaking.International congress on applied research in sport (pp. 151-155).

Nilsson, J. E., & Rosdahl, H. G. (2016). Contribution of leg-muscle forces to paddle force and kayak speed during maximal-effort flat-water paddling. International Journal of Sports Physiology and Performance, 11(1), 22-27. DOI: 10.1123/ijspp.2014-0030

Petrovic, M. R., García-Ramos, A., Janicijevic, D. N., Pérez-Castilla, A., Knezevic, O. M., & Mirkov, D. M. (2020). The Novel Single-Stroke Kayak Test: Can It Discriminate Between 200-m and Longer-Distance (500-and 1000-m) Specialists in Canoe Sprint? International Journal of Sports Physiology and Performance, 1(aop), 1-8. DOI: 10.1123/ijspp.2019-0925

Sperlich, J., & Baker, J. (2002). Biomechanical testing in elite canoeing.ISBS-Conference Proceedings Archive. Retrieved from: https://ojs.ub.uni-konstanz.de/cpa/article/download/2827/2672

Stothart, J. P., Reardon, F. D., & Thoden, J. S. (1986). Paddling ergometer kinematics of elite kayakers. ISBS-Conference Proceedings Archive. Retrieved from: https://ojs.ub.uni-konstanz.de/cpa/article/view/1505

Sturm, D., Yousaf, K., & Eriksson, M. (2010). A kayak training system for force measurement on-water. ISBS-Conference Proceedings Archive. Retrieved from: https://ojs.ub.uni-konstanz.de/cpa/article/view/4566/4253

Taborri, J., Keogh, J., Kos, A., Santuz, A., Umek, A., Urbanczyk, C., Van der Kruk, E., & Rossi, S. (2020). Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Applied bionics and biomechanics, 2020. DOI: 10.1155/2020/2041549

Tanner, R. K., Fuller, K. L., & Ross, M. L. (2010). Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. European journal of applied physiology, 109(3), 551-559. DOI: 10.1007/s00421-010-1379-9

Downloads

Published

2023-07-03

How to Cite

Veispals, M., & Gulbe, A. (2023). STROKE PARAMETER ANALYSIS PERFORMING A COMPETITION DISTANCE (200 M) ON WATER. SOCIETY. INTEGRATION. EDUCATION. Proceedings of the International Scientific Conference, 2, 563-575. https://doi.org/10.17770/sie2023vol2.7118