MODELLING OF MATHEMATICAL PROCESSES AS A SCIENTIFIC COGNITION IN HIGH SCHOOL
DOI:
https://doi.org/10.17770/sie2020vol3.5016Keywords:
knowledge transfer, learning approaches, mathematical modelling, scientific inquiry, systems theoryAbstract
The topicality of the article relates to the use of modelling in a real, complicated and complex process, with the need to forecast the progress and results of the occurrence. Article problem: In school, the focus is on building theoretical models, without real-life context. In real life, the problems are interdisciplinary, more difficult to define than in the theoretical model. The student should be able to transfer knowledge and concepts from one learning discipline in which he can deal with the problem to another. Mathematical modelling offers opportunities to connect and use knowledge from different disciplines. The aim of the article is to stimulate interest in the use of diverse learning approaches and forms, on the learning of mathematics as science, on its application in other scientific disciplines to address problems, on mathematics as a form of systemic thinking and on mathematical modelling as a learning method. The study used student test papers and open-ended questionnaires to collect data. The research used data triangulation method for data processing.
Downloads
References
Blum, W., & Borromeo-Ferri, R. (2009). Mathematical Modelling: Can It Be Taught and Learnt? Retrieved from
https://pdfs.semanticscholar.org/ebc2/4e810efa2f5361b9accfc0097c2bca084b89.pdf
Bonka, D., France, I., Mencis, J., Vilciņš, J., Muceniece, I., Riemere, I., Čakāne, L., & Lāce, G. (2010). Matemātika skolā. Rīga: Lielvārds.
Broks, A. (1988). Sistēmas ap mums un mēs sistēmās. Rīga: Zvaigzne.
Chengnm, A.K. (2001). Teaching Mathematical Modelling in Singapore Schools. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.870.1449&rep=rep1&type=pdf
Čerāns, K. (2009). Kas ir matemātisks pierādījums? Rīga: Latvijas Universitāte.
Dekarts, R. (1978). Pārruna par metodi. Rīga: Zvaigzne.
Garyayev, A.V. (2006). Fizicheskoye, matematicheskoye i kompyuternoye modelirovaniye prirodnykh protsessov i system na urokakh fiziki. Retrieved from https://www.elibrary.ru/contents.asp?issueid=1276579
Geske, A., Grīnfelds, A., Kangro, A., & Kiseļova, R. (2013). Latvija OECD Starptautiskajā skolēnu novērtēšanas programmā 2012 – pirmie rezultāti un secinājumi. Retrieved from https://www.ipi.lu.lv/fileadmin/_migrated/content_uploads/Latvija_SSNP_2012_pirmie_rezultati_un_secinajumi.pdf
Greefrath, G. & Vorhölter, K. (2016). Teaching and Learning Mathematical Modelling. Retrieved from https://link.springer.com/content/pdf/10.1007%2F978-3-319-45004-9.pdf
Freudenthal, H. (1978). Weeding and Sowing. https://epdf.pub/weeding-and-sowing-preface-to-a-science-of-mathematical-education.html
Mencis, J. (2014). Matemātikas metodika pamatskolā. Rīga: Zvaigzne ABC.
Moriyama, J., Suzuki, T., Miyazaki, M., & Sakakibara, Y. (2007). Integrated Learning of "Modeling" through Mathematics, Science and Technology. Retrieved from https://www.iteea.org/File.aspx?id=86696&v=4e822661
Niss, M. (2002). Mathematical competencies and the learning of mathematics: the Danish komproject. Retrieved from
http://www.math.chalmers.se/Math/Grundutb/CTH/mve375/1112/docs/KOMkompetenser.pdf
Palamarčuka, V. (1984). Skola māca domāt. Rīga: Zvaigzne.
Mārtinsone, K., Pipere, A., & Kamerāde, D. (2016). Pētniecība: teorija un prakse. Rīga: RaKa.
Podnieks, K. (2014). Modelēšanas robežas: ielāpu sega kā vienīgā iespējamā pasaules aina. Retrieved from http://www.ltn.lv/~podnieks/
Reihenova, A. (2018a). Vidusskolēnu domāšanas veidi matemātikas mācīšanās procesā. Society. Integration. Education. Vol. II, 405-418.
DOI: http://dx.doi.org/10.17770/sie2018vol1.3427
Reihenova, A. (2018b). Self-motivated Secondary School Student in Learning Mathematics. The 60st International Scientific Conference of Daugavpils University. Retrieved from: https://dukonference.lv/files/978-9984-14-864-9_60_konf_kraj_B_Soc%20zin.pdf
Reihenova, A. (2019a). Integrētās mācības matemātikas un dabaszinātņu mācīšanās procesā vidusskolā. Society. Integration. Education. Vol. II, 445-459. DOI: http://dx.doi.org/10.17770/sie2019vol2.3929
SKOLA 2030. (2017). Izglītība mūsdienīgai lietpratībai: mācību satura un pieejas apraksts. Retrieved from
http://www.izm.gov.lv/images/aktualitates/2017/Skola2030Dokuments.pdf
VISC. (2017, 2018, 2019). Vispārējā izglītība. Pārbaudes darbi. Retrieved from https://visc.gov.lv/vispizglitiba/eksameni/statistika.shtml
Vedins, I. (2008). Zinātne un patiesība. Rīga: Avots.
Zeps, D. (2009). Matemātika un fizika ir viens un tas pats. Ceļā uz tās vienkāršošanos. Retrieved from