TRANSFER LEARNING FOR TRAINING ACCELARATION
DOI:
https://doi.org/10.17770/het2021.25.6773Keywords:
Alexnet, CNN, Convolution Neuron Network, Model, Transfer learning,Abstract
In this work, authors compare training time of standard convolution neuron network model with model trained using transfer learning. Both models are based on Alexnet architecture. CNN model training from scratch included full model, but using transfer learning, some layers of model were frozen for learning acceleration considering transfer learning methodology.Downloads
Download data is not yet available.
References
Konvolucionāli neironu tīkli vizuālai atpazīšanai [tiešsaiste], [atsauce uz 07.08.2020.]. Pieejams: https://cs231n.github.io/convolutional-networks/
Transfer learning pamatideja [tiešsaiste], [atsauce uz 18.08.2020.]. Pieejams: https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce
Alexnet arhitektūra [tiešsaiste], [atsauce uz 12.08.2020.]. Pieejams: https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637
H. Mureșan & O. Mihai. Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica, vol. 10, pp. 26-42, 2018.
CIFAR100 datu kopa [tiešsaiste], [atsauce uz 12.08.2020.].
Downloads
Published
2021-04-23
Issue
Section
Information Technologies
How to Cite
[1]
I. Apeināns, V. Žukovs, S. Kodors, and I. Zarembo, “TRANSFER LEARNING FOR TRAINING ACCELARATION”, HET, no. 25, pp. 16–21, Apr. 2021, doi: 10.17770/het2021.25.6773.