EVALUATING THE PERFORMANCE OF EFAS HYDROLOGICAL PREDICTIONS IN LATVIAN RIVER BASINS: A COMPARISON WITH OBSERVATIONAL DATA

Authors

  • Andris Skromulis Rezekne Academy of Riga Technical University (LV)
  • Juris Breidaks Forecast and Climate Department, Climate and Numerical Modelling Division SLLC “Latvian Environment, Geology and Meteorology Centre” (LV)
  • Svetlana Aņiskeviča Forecast and Climate Department, SLLC “Latvian Environment, Geology and Meteorology Centre” (LV)
  • Līga Klints Forecast and Climate Department, SLLC “Latvian Environment, Geology and Meteorology Centre” (LV)
  • Darja Hudjakova Forecast and Climate Department, SLLC “Latvian Environment, Geology and Meteorology Centre” (LV)

DOI:

https://doi.org/10.17770/etr2025vol1.8705

Keywords:

EFAS, hydrology, REFORECAST, ECMWF, verification

Abstract

This study evaluates the performance of the European Flood Awareness System (EFAS) [1] in predicting hydrological variables by comparing EFAS reforecast data with observational data from the Latvian Environment, Geology and Meteorology Centre (LVGMC). Using the open-source LISFLOOD hydrological model [2], the study examines the accuracy of ECMWF-driven predictions of river discharge and water levels across Latvia’s diverse river basins. The study employs a variety of interpolation techniques, including linear interpolation and nearest neighbour interpolation, to extract grid data from the Copernicus Early Warning Data Store (EWDS) [3] dataset at hydrological station points. To assess prediction accuracy, a range of statistical and error metrics, including Mean Error (ME) [4], [5], Root Mean Squared Error (RMSE) [5] - [7], Nash-Sutcliffe Efficiency (NSE) [5], [8]-[12] and Kling-Gupta Efficiency (KGE) [5], [12], [13], are utilized. The analysis highlights the effectiveness of EFAS in different seasonal and hydrometeorological conditions, identifying both strengths and limitations in the model's performance. Furthermore, the study explores potential calibration approaches to including regional forecasting capabilities, particularly in light of climate change impacts on low-flow and drought period predictions. This research provides valuable insights into the application of continental-scale hydrological models at the regional level, offering recommendations for improving the accuracy of flood forecasting systems.

 

References

C.Mazzetti, et al., EFAS v5.0 hydrological reanalysis, European Commission, Ispra, 2023, JRC134686.

J.M. van Der Knijff, J. Younis and A.P.J. De Roo, LISFLOOD: a GIS‐based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science, 2008, 24(2), pp.189–212. https://doi.org/10.1080/13658810802549154 DOI: https://doi.org/10.1080/13658810802549154

Reforecasts of river discharge and related data by the European Flood Awareness System,

https://ewds.climate.copernicus.eu/datasets/efas-reforecast?tab=overview

R.A. Fisher, A Mathematical Examination of the Methods of Determining the Accuracy of an Observation by the Mean Error, and by the Mean Square Error. Monthly Notices of the Royal Astronomical Society, 1920, 80, pp. 758 - 770. DOI: https://doi.org/10.1093/mnras/80.8.758

W.Roberts, G. Williams, E., Jackson, E. Nelson and D. Ames, Hydrostats: A Python Package for Characterizing Errors between Observed and Predicted Time Series. Hydrology, 2018, 5(4) 66, doi:10.3390/hydrology5040066 DOI: https://doi.org/10.3390/hydrology5040066

C.J. Willmott and K. Matsuura, K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 2005, 30(1), pp. 79-82. DOI: https://doi.org/10.3354/cr030079

R.J. Hyndman and A.B. Koehler, Another look at measures of forecast accuracy. International Journal of Forecasting, 2006, 22(4), pp. 679-688. DOI: https://doi.org/10.1016/j.ijforecast.2006.03.001

P.Krause, D. Boyle and F. Bäse, Comparison of different efficiency criteria for hydrological model assessment. Advances in geosciences, 2005, 5, pp. 89-97. DOI: https://doi.org/10.5194/adgeo-5-89-2005

R.H. McCuen, Z. Knightand A.G. Cutter, Evaluation of the Nash-Sutcliffe Efficiency Index. Journal of Hydraulic Engineering, 2006. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)

J.E. Nash and J.V. Sutcliffe, River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 1970, pp. 282-290. DOI: https://doi.org/10.1016/0022-1694(70)90255-6

C.J. Willmott, S.M. Robeson and K. Matsuura, A refined index of model performance. International Journal of Climatology, 2012, 32(13) pp. 2088-2094. DOI: https://doi.org/10.1002/joc.2419

H. V. Gupta, H. Kling, K.K. Yilmaz and G.F. Martinez, Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 2009, 377(1-2), pp. 80-91. DOI: https://doi.org/10.1016/j.jhydrol.2009.08.003

H. Kling, M. Fuchs and M. Paulin, Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 2012, 424, pp.264-277. DOI: https://doi.org/10.1016/j.jhydrol.2012.01.011

L. Arnal, H.L.Cloke, E. Stephens, F.Wetterhall, C. Prudhomme, J. Neumann, B. Krzeminski, and F. Pappenberger, Skilful seasonal forecasts of streamflow over Europe? Hydrology and Earth System Sciences, 2018, 22, pp. 2057-2072. DOI: https://doi.org/10.5194/hess-22-2057-2018

N. Wanders, S. Thober, R. Kumar, M. Pan, J. Sheffield, L. Samaniego and E.F. Wood, Development and evaluation of a pan-European multimodel seasonal hydrological forecasting system. Journal of Hydrometeorology, 2019, 20, pp. 99-115. DOI: https://doi.org/10.1175/JHM-D-18-0040.1

F. Pappenberger, H.L. Cloke, D. J. Parker, F. Wetterhall, D.S. Richardson and J. Thielen, The monetary benefit of early flood warnings in Europe. Environmental Science & Policy, 2015, 51, pp. 278-291. DOI: https://doi.org/10.1016/j.envsci.2015.04.016

S. Hoyer and J. Hamman. Xarray: N-D labeled arrays and datasets in Python. Journal of Open Research Software, 2017. URL: doi:10.5334/jors.148. DOI: https://doi.org/10.5334/jors.148

S. Hoyer, C. Fitzgerald, J. Hamman, and others. Xarray: v2022.3.0. May 2022. doi:10.5281/zenodo.59499.

P. Virtanen, R. Gommers, T.E. Oliphant et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods, 2020, 17, pp. 261–272. https://doi.org/10.1038/s41592-019-0686-2 DOI: https://doi.org/10.1038/s41592-019-0686-2

C. Spearman, “The proof and measurement of association between two things”. American Journal of Psychology, 1904, 15: 72–101. doi:10.2307/1412159 DOI: https://doi.org/10.2307/1412159

R.H. Langland, and R. N. Maue. “Recent Northern Hemisphere Mid-Latitude Medium-Range Deterministic Forecast Skill.” Tellus A: Dynamic Meteorology and Oceanography 64, no. 1, 2012, pp.17531. DOI: https://doi.org/10.3402/tellusa.v64i0.17531

K. Miyakoda, G. D. Hembree, R. F. Strickler, and I. Shulman. “Cumulative Results of Extended Forecast Experiments I. Model Performance for Winter Cases.” Monthly Weather Review 100, no. 12, 1972, pp. 836–55. DOI: https://doi.org/10.1175/1520-0493(1972)100<0836:CROEFE>2.3.CO;2

A. H.Murphy and E. S. Epstein. “Skill Scores and Correlation Coefficients in Model Verification.” Monthly Weather Review 117, no. 3, 1989, pp. 572–82. DOI: https://doi.org/10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2

D.R. Legates and Jr, G.J. McCabe, Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 1999, 35(1) pp.233-241. DOI: https://doi.org/10.1029/1998WR900018

E.L. Lehmann and G. Casella, Springer Texts in Statistics. Springer-Verlag, New York, 1998.

Downloads

Published

11.06.2025

How to Cite

[1]
A. Skromulis, J. Breidaks, S. Aņiskeviča, L. Klints, and D. Hudjakova, “EVALUATING THE PERFORMANCE OF EFAS HYDROLOGICAL PREDICTIONS IN LATVIAN RIVER BASINS: A COMPARISON WITH OBSERVATIONAL DATA”, ETR, vol. 1, pp. 509–514, Jun. 2025, doi: 10.17770/etr2025vol1.8705.