INFLUENCE OF SUCCINITE ADDITIVES ON THE CRYSTAL STRUCTURE AND ORIENTATION OF COMPOSITE PA6 NANOFIBERS
DOI:
https://doi.org/10.17770/etr2024vol3.8148Keywords:
PA6 (Polyamide 6), Nanofibers, Electrospinning, composity nanofibers, Nylon 6Abstract
Give this article delves into the investigation of the crystal structure and crystalline orientation of composite polyamide 6 (PA6) nanofibers. The study aims to elucidate the impact of crystallinity and crystalline orientation on the properties of composite nanofibers, which were manufactured by the electrospinning process of Nylon 6/formic acid (HCOOH) polymer solutions at concentrations of 16%, 20% and 28%, incorporating 0.25% succinite powder with particle sizes ranging from 5 to 20 nm. The average diameters of the resulting nanofiber mats were systematically measured, revealing dimensions of 50±15 nm, 90±18 nm, and 340±78 nm, respectively. Using wide-angle X-ray diffraction (WAXD) analysis, the study provides a detailed examination of how the concentration of PA6 and the inclusion of organic succinite additives influence the crystal structure and crystalline orientation within the polymer matrix. In particular, it highlights the effects observed at smaller diameters of composite nanofibers, where enhanced macromolecular alignment is coupled with reduced crystallinity, marking the first comprehensive exploration of these phenomena in individual composite nanofibers. Research demonstrates that the relative distribution of different crystalline phases varies among samples with different average diameters. Notably, the sample with the smallest average diameter of 50 nm showcased a singular crystalline peak at 2θ=21.23°, closely aligning with the theoretically reported value for the γ phase (2θ=21.4°). On the contrary, samples with larger average diameters revealed progressively more distinct shoulders on X-ray diffraction patterns, indicative of the α phase. A notable increase of approximately 25% was observed as the diameter of the composite nanofibers decreased. Furthermore, the composite nanofibers of smaller diameter presented a narrower full width at Half Maximum (FWHM), suggesting enhanced orientation for both observed phases. This study not only contributes to understanding of the influence of nanofiber composition and structure on their physical properties but also opens new avenues for the tailored design of nanofiber based composites for advanced engineering applications.
Downloads
References
M. Naraghi, S. N. Arshad, and I. Chasiotis, “Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers,” Polymer (Guildf)., vol. 52, no. 7, pp. 1612–1618, 2011, doi: 10.1016/j.polymer.2011.02.013
D. Tian, C. H. He, and J. H. He, “Macromolecule orientation in nanofibers,” Nanomaterials, vol. 8, no. 11, 2018, doi: 10.3390/nano8110918.
L. S. Loo and K. K. Gleason, “Insights into structure and mechanical behavior of α and γ crystal forms of nylon-6 at low strain by infrared studies,” Macromolecules, vol. 36, no. 16, pp. 6114–6126, 2003, doi: 10.1021/ma034213v.
H. S. SalehHudin, E. N. Mohamad, W. N. L. Mahadi, and A. Muhammad Afifi, “Multiple-jet electrospinning methods for nanofiber processing: A review,” Mater. Manuf. Process., vol. 33, no. 5, pp. 479–498, 2018, doi: 10.1080/10426914.2017.1388523.
M. B. Bazbouz and G. K. Stylios, “The tensile properties of electrospun nylon 6 single nanofibers,” J. Polym. Sci. Part B Polym. Phys., vol. 48, no. 15, pp. 1719–1731, 2010, doi: 10.1002/polb.21993.
K. Y. Hwang, S. D. Kim, Y. W. Kim, and W. R. Yu, “Mechanical characterization of nanofibers using a nanomanipulator and atomic force microscope cantilever in a scanning electron microscope,” Polym. Test., vol. 29, no. 3, pp. 375–380, 2010, doi: 10.1016/j.polymertesting.2010.01.002.
H. Mahfuz et al., “Enhancement of strength and stiffness of Nylon 6 filaments through carbon nanotubes reinforcement,” Appl. Phys. Lett., vol. 88, no. 8, 2006, doi: 10.1063/1.2179132.
L. Li, L. M. Bellan, H. G. Craighead, and M. W. Frey, “Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers,” Polymer (Guildf)., vol. 47, no. 17, pp. 6208–6217, 2006, doi: 10.1016/j.polymer.2006.06.049.
N. Kimura, B. S. Kim, and I. S. Kim, “Effects of Fe2+ ions on morphologies, microstructures and mechanical properties of electrospun nylon-6 nanofibers,” Polym. Int., vol. 63, no. 2, pp. 266–272, 2014, doi: 10.1002/pi.4500.
H. Mahfuz et al., “Reinforcement of nylon 6 with functionalized silica nanoparticles for enhanced tensile strength and modulus,” Nanotechnology, vol. 19, no. 44, 2008, doi: 10.1088/0957-4484/19/44/445702.
O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Prog. Polym. Sci., vol. 37, no. 11, pp. 1552–1596, 2012, doi: 10.1016/j.progpolymsci.2012.04.003.
S. Sinha-Ray et al., “Supersonic nanoblowing: A new ultra-stiff phase of nylon 6 in 20-50 nm confinement,” J. Mater. Chem. C, vol. 1, no. 21, pp. 3491–3498, 2013, doi: 10.1039/c3tc30248b.
Z. Yang, W. Takarada, and H. Matsumoto, “Effect of the Fiber Diameter of Polyamide 11 Nanofibers on Their Internal Molecular Orientation and Properties.,” Macromol. Rapid Commun., vol. 44, no. 18, p. e2300212, Sep. 2023, doi: 10.1002/marc.202300212.
M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc., vol. 129, no. 10, pp. 2777–2782, 2007, doi: 10.1021/ja065043f.
H. M. Heuvel, R. Huisman, and K. C. J. B. Lind, “Quantitative Information From X-Ray Diffraction of Nylon-6 Yarns - 1. Development of a Model for the Analytical Description of Equatorial X-Ray Profiles.,” J Polym Sci Part A-2 Polym Phys, vol. 14, no. 5, pp. 921–940, 1976.
S. S. Nair, C. Ramesh, and K. Tashiro, “Crystalline phases in nylon-11: Studies using HTWAXS and HTFTIR,” Macromolecules, vol. 39, no. 8, pp. 2841–2848, 2006, doi: 10.1021/ma052597e.
P. Čapková et al., “Phase composition and surface properties of nylon-6 nanofibers prepared by nanospider technology at various electrode distances,” J. Polym. Res., vol. 22, no. 6, 2015, doi: 10.1007/s10965-015-0741-3.
T. M. Ting, M. M. Nasef, and K. Hashim, “Tuning N-methyl-d-glucamine density in a new radiation grafted poly(vinyl benzyl chloride)/nylon-6 fibrous boron-selective adsorbent using the response surface method,” RSC Adv., vol. 5, no. 47, pp. 37869–37880, 2015, doi: 10.1039/c5ra00427f.
M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr., vol. 10, no. 1, pp. 66–68, 1977, doi: 10.1107/s0021889877012849.
S. M. Aharoni, n-Nylons : their synthesis, structure, and properties. Chichester : Wiley, 1997. [Online]. Available: http://lib.ugent.be/catalog/rug01:000394343
J. C. Ho and K. H. Wei, “Induced γ → α crystal transformation in blends of polyamide 6 and liquid crystalline copolyester,” Macromolecules, vol. 33, no. 14, pp. 5181–5186, 2000, doi: 10.1021/ma991702f.
J. M. Schultz, B. S. Hsiao, and J. M. Samon, “Structural development during the early stages of polymer melt spinning by in-situ synchrotron X-ray techniques,” Polymer (Guildf)., vol. 41, no. 25, pp. 8887–8895, 2000, doi: 10.1016/S0032-3861(00)00232-9.
C. Ramesh and E. Bhoje Gowd, “High-temperature X-ray diffraction studies on the crystalline transitions in the α- and γ-forms of nylon-6,” Macromolecules, vol. 34, no. 10, pp. 3308–3313, 2001, doi: 10.1021/ma0006979.
Z. Zhao, W. Zheng, H. Tian, W. Yu, D. Han, and B. Li, “Crystallization behaviors of secondarily quenched Nylon 6,” Mater. Lett., vol. 61, no. 3, pp. 925–928, 2007, doi: 10.1016/j.matlet.2006.06.014.
J. Ge et al., “[Investigation of thermal behaviors of γ-form nylon 6 prepared by ammonia vapor from phosphoric acid solutions].,” Guang Pu Xue Yu Guang Pu Fen Xi, vol. 32, no. 1, pp. 118–122, Jan. 2012.
C. Feng, K. C. Khulbe, T. Matsuura, S. Tabe, and A. F. Ismail, “Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment,” Sep. Purif. Technol., vol. 102, pp. 118–135, 2013, doi: 10.1016/j.seppur.2012.09.037.
J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, 2019, doi: 10.1021/acs.chemrev.8b00593.
C. V. Pious and S. Thomas, “Polymeric Materials-Structure, Properties, and Applications,” Print. Polym. Fundam. Appl., pp. 21–39, 2015, doi: 10.1016/B978-0-323-37468-2.00002-6.
C. O. Mosiori, “Combustion synthesis and characterization of dysprosium nano-composite melilite,” Memories - Mater. Devices, Circuits Syst., vol. 4, no. March, p. 100042, 2023, doi: 10.1016/j.memori.2023.100042.
D. Marlina, H. Hoshina, Y. Ozaki, and H. Sato, “Crystallization and crystalline dynamics of poly(3-hydroxybutyrate) / poly(4-vinylphenol) polymer blends studied by low-frequency vibrational spectroscopy,” Polymer (Guildf)., vol. 181, no. August, p. 121790, 2019, doi: 10.1016/j.polymer.2019.121790.
Z. Püspöki, M. Storath, D. Sage, and M. Unser, “Transforms and operators for directional bioimage analysis: A survey,” Adv. Anat. Embryol. Cell Biol., vol. 219, pp. 69–93, 2016, doi: 10.1007/978-3-319-28549-8_3.
I. Lasenko, D. Grauda, D. Butkauskas, J. V. Sanchaniya, A. Viluma-Gudmona, and V. Lusis, “Testing the Physical and Mechanical Properties of Polyacrylonitrile Nanofibers Reinforced with Succinite and Silicon Dioxide Nanoparticles,” Textiles, vol. 2, no. 1, pp. 162–173, 2022, doi: 10.3390/textiles2010009.
A. Viluma-Gudmona, I. Lasenko, J. V. Sanchaniya, and B. Abdelhadi, “The amber nano fibers development prospects to expand the capabilites of textile 3D printing in the general process of fabrication methods,” Eng. Rural Dev., vol. 20, pp. 248–257, 2021, doi: 10.22616/ERDev.2021.20.TF051.
D. Grauda, L. Bumbure, I. Lyashenko, A. Katashev, Y. Dekhtyar, and I. Rashal, “Amber particles as living plant cell markers in flow cytometry,” Proc. Latv. Acad. Sci. Sect. B Nat. Exact, Appl. Sci., vol. 69, no. 3, pp. 77–81, 2015, doi: 10.1515/prolas-2015-0011.
A. Viluma-Gudmona, I. Lasenko, J. V. Sanchaniya, and A. Podgornovs, “Electro-resistant biotextile development based on fiber reinforcement with nano particles,” Eng. Rural Dev., vol. 20, pp. 804–812, 2021, doi: 10.22616/ERDev.2021.20.TF182.
I. Lasenko et al., “The Mechanical Properties of Nanocomposites Reinforced with PA6 Electrospun Nanofibers,” Polymers (Basel)., vol. 15, no. 3, 2023, doi: 10.3390/polym15030673.
V. Lusis et al., “Experimental Study and Modelling on the Structural Response of Fiber Reinforced Concrete Beams,” Appl. Sci., vol. 12, no. 19, p. 9492, Sep. 2022, doi: 10.3390/app12199492.
S. Gaidukovs, I. Lyashenko, J. Rombovska, and G. Gaidukova, “Application of amber filler for production of novel polyamide composite fiber,” Text. Res. J., vol. 86, no. 20, pp. 2127–2139, 2016, doi: 10.1177/0040517515621130.
J. V. Sanchaniya, I. Lasenko, S. P. Kanukuntla, A. Mannodi, A. Viluma-Gudmona, and V. Gobins, “Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibers,” Nanomaterials, vol. 13, no. 13, 2023, doi: 10.3390/nano13131949.
J. V. Sanchaniya et al., “Mechanical and Thermal Characterization of Annealed Oriented PAN Nanofibers,” Polymers (Basel)., vol. 15, no. 15, 2023, doi: 10.3390/polym15153287.
D. Grauda et al., “Establishment of Biotesting System to Study Features of Innovative Multifunctional Biotextile,” Proc. Latv. Acad. Sci. Sect. B Nat. Exact, Appl. Sci., vol. 77, no. 3–4, pp. 186–192, 2023, doi: 10.2478/prolas-2023-0026.
A. Hussain, V. Podgursky, D. Goljandin, M. Antonov, F. Sergejev, and I. Krasnou, “Circular Production, Designing, and Mechanical Testing of Polypropylene-Based Reinforced Composite Materials: Statistical Analysis for Potential Automotive and Nuclear Applications,” Polymers (Basel)., vol. 15, no. 16, 2023, doi: 10.3390/polym15163410.
A. Hussain, V. Podgursky, M. Viljus, and M. R. Awan, “The role of paradigms and technical strategies for implementation of the circular economy in the polymer and composite recycling industries,” Adv. Ind. Eng. Polym. Res., vol. 6, no. 1, pp. 1–12, 2023, doi: 10.1016/j.aiepr.2022.10.001.
A. Hussain, D. Goljandin, V. Podgursky, M. M. Abbas, and I. Krasnou, “Experimental mechanics analysis of recycled polypropylene-cotton composites for commercial applications,” Adv. Ind. Eng. Polym. Res., vol. 6, no. 3, pp. 226–238, 2023, doi: 10.1016/j.aiepr.2022.11.001.
A. Asar and W. Zaki, “A comprehensive review of the mechanisms and structure of interpenetrating phase composites with emphasis on metal-metal and polymer-metal variants,” Compos. Part B, vol. 275, no. October 2023, p. 111314, 2024, doi: 10.1016/j.compositesb.2024.111314.
S. A. Kareem, J. U. Anaele, E. O. Aikulola, T. A. Adewole, M. O. Bodunrin, and K. K. Alaneme, “Design and selection of metal matrix composites reinforced with high entropy alloys – Functionality appraisal and applicability in service: A critical review,” J. Alloy. Metall. Syst., vol. 5, no. January, p. 100057, 2024, doi: 10.1016/j.jalmes.2024.100057.
A. Shishkin, I. Hussainova, V. Kozlov, M. Lisnanskis, P. Leroy, and D. Lehmhus, “Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams,” Jom, vol. 70, no. 7, pp. 1319–1325, 2018, doi: 10.1007/s11837-018-2886-0.
A. Shishkin et al., “Cavitation-dispersion method for copper cementation from wastewater by iron powder,” Metals (Basel)., vol. 8, no. 11, pp. 4–6, 2018, doi: 10.3390/met8110920.
P. Colombo, “Cellular ceramics with hierarchical porosity from preceramic polymers,” IOP Conf. Ser. Mater. Sci. Eng., vol. 18, no. SPEC. SYMPOSIUM, 2011, doi: 10.1088/1757-899X/18/1/012002.
V. Mironovs et al., “Cellular structures from perforated metallic tape and its application for electromagnetic shielding solutions,” Agron. Res., vol. 12, p. (in Print), Jan. 2014.
M. Pelanconi, D. Koch, G. Bianchi, S. Bottacin, and P. Colombo, “High-strength Si – SiC lattices prepared by powder bed fusion , infiltration-pyrolysis , and reactive silicon infiltration,” no. December 2023, pp. 1–15, 2024, doi: 10.1111/jace.19750.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Inga Lasenko
This work is licensed under a Creative Commons Attribution 4.0 International License.