INTEGRATING MIXED REALITY WITH NEURAL NETWORKS FOR ADVANCED MOLECULAR VISUALIZATION IN BIOINFORMATICS: A MATHEMATICAL FRAMEWORK FOR DRUG DISCOVERY

Authors

  • Ivan Trenchev Faculty of Information Sciences, University of Library Studies and Information Technologies, South-West University "Neofit Rilski" (BG)
  • Tereza Trencheva Faculty of Library Studies and Cultural Heritage, University of Library Studies and Information Technologies (BG)
  • Vladimir Angelov Faculty of Library Studies and Cultural Heritage, University of Library Studies and Information Technologies
  • Yordan Spirov Faculty of Information Sciences, University of Library Studies and Information Technologies (BG)
  • Yana Karshiyska Faculty of Information Sciences, University of Library Studies and Information Technologies (BG)
  • Kamelia Shumanova Faculty of Information Sciences, University of Library Studies and Information Technologies (BG)

DOI:

https://doi.org/10.17770/etr2024vol2.8033

Keywords:

Mixed Reality, Bioinformatics, Neural Networks

Abstract

In this study, we develop and present an innovative approach that integrates Mixed Reality (MR) technologies with neural network algorithms, aiming to revolutionize molecular structure visualization in bioinformatics through the application of mathematical methods. The development includes the creation of a mathematical framework aimed at optimizing drug discovery processes, utilizing the potential of MR to facilitate detailed and interactive exploration of molecules in three-dimensional space.

Our approach is based on the use of Unreal Engine for the realization of a simulation environment and the application of Python and PyTorch for the development of complex neural network models. These models are capable of efficiently processing and analyzing molecular data, enabling scientifically grounded manipulation of molecular structures. This approach facilitates the identification of potential active sites for interaction with pharmaceutical agents, improving the efficiency and speed of the drug discovery process.

A key aspect of our work is the development of a comprehensive mathematical framework that effectively simplifies and optimizes molecular design and analysis, while simultaneously increasing the accuracy of predictions for interactions between potential drug molecules and their targets. This approach not only enriches our understanding of the molecular basis of diseases but also offers a more rational and economical path to pharmacological development.

In conclusion, we propose a new approach that we hope will be considered and applied by the scientific community. This method presents a promising opportunity for advancement in research and development in bioinformatics and pharmacology, providing a solid foundation for further exploration of molecular dynamics and drug discovery through the application of mathematical and computer sciences.

Supporting Agencies
National Science Program “Security and Defense”, which has received funding from the Ministry of Education and Science of the Republic of Bulgaria under the grant agreement D01-74 /19.05.2022.

Downloads

Download data is not yet available.

References

Acun, B., Hardy, D. J., Kale, L. V., Li, K., Phillips, J. C., & Stone, J. E. (2018. gada November). Scalable molecular dynamics with NAMD on the Summit system. IBM Journal of Research and Development, 62, 4:1–4:9. doi:10.1147/jrd.2018.2888986

Anqi, W. (2023. gada December). Economic efficiency of high-performance electric vehicle operation based on neural network algorithm. Computers and Electrical Engineering, 112, 109026. doi:10.1016/j.compeleceng.2023.109026

Antolinez, S., Jones, P. E., Phillips, J. C., & Hadden-Perilla, J. A. (2024. gada February). AMBERff at scale: Multimillion-atom simulations with AMBER force fields in NAMD. Biophysical Journal, 123, 422a. doi:10.1016/j.bpj.2023.11.2563

Asadzadeh, A., Samad-Soltani, T., & Rezaei-Hachesu, P. (2021). Applications of virtual and augmented reality in infectious disease epidemics with a focus on the COVID-19 outbreak. Informatics in Medicine Unlocked, 24, 100579. doi:10.1016/j.imu.2021.100579

Azad, T. D., Warman, A., Tracz, J. A., Hughes, L. P., Judy, B. F., & Witham, T. F. (2024. gada January). Augmented reality in spine surgery – past, present, and future. The Spine Journal, 24, 1–13. doi:10.1016/j.spinee.2023.08.015

Conchas, R. F., Loukianov, A. G., Sanchez, E. N., & Alanis, A. Y. (2024. gada January). Finite time convergent recurrent neural network for variational inequality problems subject to equality constraints. Journal of the Franklin Institute, 361, 583–597. doi:10.1016/j.jfranklin.2023.11.041

Elsawy, A., Eleiwa, T., Chase, C., Ozcan, E., Tolba, M., Feuer, W., . . . Abou Shousha, M. (2021. gada June). Multidisease Deep Learning Neural Network for the Diagnosis of Corneal Diseases. American Journal of Ophthalmology, 226, 252–261. doi:10.1016/j.ajo.2021.01.018

Kingsley, L. J., Brunet, V., Lelais, G., McCloskey, S., Milliken, K., Leija, E., . . . Spraggon, G. (2019. gada June). Development of a virtual reality platform for effective communication of structural data in drug discovery. Journal of Molecular Graphics and Modelling, 89, 234–241. doi:10.1016/j.jmgm.2019.03.010

Legetth, O., Rodhe, J., Lang, S., Dhapola, P., Wallergård, M., & Soneji, S. (2021. gada November). CellexalVR: A virtual reality platform to visualize and analyze single-cell omics data. iScience, 24, 103251. doi:10.1016/j.isci.2021.103251

Liang, L., Liu, M., Elefteriades, J., & Sun, W. (2023. gada August). PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. Computer Methods and Programs in Biomedicine, 238, 107616. doi:10.1016/j.cmpb.2023.107616

Lv, Z., Tek, A., Da Silva, F., Empereur-mot, C., Chavent, M., & Baaden, M. (2013. gada March). Game On, Science - How Video Game Technology May Help Biologists Tackle Visualization Challenges. (P. Taylor, Red.) PLoS ONE, 8, e57990. doi:10.1371/journal.pone.0057990

Ma, H., Xiao, S., Dong, D., & Petersen, I. R. (2023). Tomography of quantum detectors using neural networks. IFAC-PapersOnLine, 56, 5875–5880. doi:10.1016/j.ifacol.2023.10.088

Malard, F., Danner, L., Rouzies, E., Meyer, J. G., Lescop, E., & Olivier-Van Stichelen, S. (2022. gada July). EpyNN: Educational python for Neural Networks. SoftwareX, 19, 101140. doi:10.1016/j.softx.2022.101140

Patwardhan, A., Ashton, A., Brandt, R., Butcher, S., Carzaniga, R., Chiu, W., . . . Kleywegt, G. J. (2014. gada October). A 3D cellular context for the macromolecular world. Nature Structural & Molecular Biology, 21, 841–845. doi:10.1038/nsmb.2897

Phillips, J. C., Hardy, D. J., Maia, J. D., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., . . . Tajkhorshid, E. (2020. gada July). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153. doi:10.1063/5.0014475

Sahu, M., Gupta, R., Ambasta, R. K., & Kumar, P. (2024. gada April). IoT-driven augmented reality and virtual reality systems in neurological sciences. Internet of Things, 25, 101098. doi:10.1016/j.iot.2024.101098

Samant, S., Bakhos, J. J., Wu, W., Zhao, S., Kassab, G. S., Khan, B., . . . Chatzizisis, Y. S. (2023. gada October). Artificial Intelligence, Computational Simulations, and Extended Reality in Cardiovascular Interventions. JACC: Cardiovascular Interventions, 16, 2479–2497. doi:10.1016/j.jcin.2023.07.022

Suh, H. S., Kweon, C., Lester, B., Kramer, S., & Sun, W. (2023. gada September). A publicly available PyTorch-ABAQUS UMAT deep-learning framework for level-set plasticity. Mechanics of Materials, 184, 104682. doi:10.1016/j.mechmat.2023.104682

Varangot-Reille, C., Sanger, G. J., Andrews, P. L., Herranz-Gomez, A., Suso-Martí, L., de la Nava, J., & Cuenca-Martínez, F. (2023. gada March). Neural networks involved in nausea in adult humans: A systematic review. Autonomic Neuroscience, 245, 103059. doi:10.1016/j.autneu.2022.103059

Xiao, J., Huang, L., Song, Y., & Tang, N. (2023. gada May). A Recursive tree-structured neural network with goal forgetting and information aggregation for solving math word problems. Information Processing & Management, 60, 103324. doi:10.1016/j.ipm.2023.103324

Zhao, C., Wang, H., Qi, W., & Liu, S. (2022. gada November). Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network. Methods, 207, 81–89. doi:10.1016/j.ymeth.2022.09.005

Zinchenko, S., & Lishudi, D. (2024. gada February). Star algorithm for neural network ensembling. Neural Networks, 170, 364–375. doi:10.1016/j.neunet.2023.11.020

Downloads

Published

2024-06-22

How to Cite

[1]
I. Trenchev, T. Trencheva, V. Angelov, Y. Spirov, Y. Karshiyska, and K. Shumanova, “INTEGRATING MIXED REALITY WITH NEURAL NETWORKS FOR ADVANCED MOLECULAR VISUALIZATION IN BIOINFORMATICS: A MATHEMATICAL FRAMEWORK FOR DRUG DISCOVERY”, ETR, vol. 2, pp. 286–292, Jun. 2024, doi: 10.17770/etr2024vol2.8033.