INTEGRATING MIXED REALITY WITH NEURAL NETWORKS FOR ADVANCED MOLECULAR VISUALIZATION IN BIOINFORMATICS: A MATHEMATICAL FRAMEWORK FOR DRUG DISCOVERY
DOI:
https://doi.org/10.17770/etr2024vol2.8033Keywords:
Mixed Reality, Bioinformatics, Neural NetworksAbstract
In this study, we develop and present an innovative approach that integrates Mixed Reality (MR) technologies with neural network algorithms, aiming to revolutionize molecular structure visualization in bioinformatics through the application of mathematical methods. The development includes the creation of a mathematical framework aimed at optimizing drug discovery processes, utilizing the potential of MR to facilitate detailed and interactive exploration of molecules in three-dimensional space.
Our approach is based on the use of Unreal Engine for the realization of a simulation environment and the application of Python and PyTorch for the development of complex neural network models. These models are capable of efficiently processing and analyzing molecular data, enabling scientifically grounded manipulation of molecular structures. This approach facilitates the identification of potential active sites for interaction with pharmaceutical agents, improving the efficiency and speed of the drug discovery process.
A key aspect of our work is the development of a comprehensive mathematical framework that effectively simplifies and optimizes molecular design and analysis, while simultaneously increasing the accuracy of predictions for interactions between potential drug molecules and their targets. This approach not only enriches our understanding of the molecular basis of diseases but also offers a more rational and economical path to pharmacological development.
In conclusion, we propose a new approach that we hope will be considered and applied by the scientific community. This method presents a promising opportunity for advancement in research and development in bioinformatics and pharmacology, providing a solid foundation for further exploration of molecular dynamics and drug discovery through the application of mathematical and computer sciences.
Downloads
References
Acun, B., Hardy, D. J., Kale, L. V., Li, K., Phillips, J. C., & Stone, J. E. (2018. gada November). Scalable molecular dynamics with NAMD on the Summit system. IBM Journal of Research and Development, 62, 4:1–4:9. doi:10.1147/jrd.2018.2888986
Anqi, W. (2023. gada December). Economic efficiency of high-performance electric vehicle operation based on neural network algorithm. Computers and Electrical Engineering, 112, 109026. doi:10.1016/j.compeleceng.2023.109026
Antolinez, S., Jones, P. E., Phillips, J. C., & Hadden-Perilla, J. A. (2024. gada February). AMBERff at scale: Multimillion-atom simulations with AMBER force fields in NAMD. Biophysical Journal, 123, 422a. doi:10.1016/j.bpj.2023.11.2563
Asadzadeh, A., Samad-Soltani, T., & Rezaei-Hachesu, P. (2021). Applications of virtual and augmented reality in infectious disease epidemics with a focus on the COVID-19 outbreak. Informatics in Medicine Unlocked, 24, 100579. doi:10.1016/j.imu.2021.100579
Azad, T. D., Warman, A., Tracz, J. A., Hughes, L. P., Judy, B. F., & Witham, T. F. (2024. gada January). Augmented reality in spine surgery – past, present, and future. The Spine Journal, 24, 1–13. doi:10.1016/j.spinee.2023.08.015
Conchas, R. F., Loukianov, A. G., Sanchez, E. N., & Alanis, A. Y. (2024. gada January). Finite time convergent recurrent neural network for variational inequality problems subject to equality constraints. Journal of the Franklin Institute, 361, 583–597. doi:10.1016/j.jfranklin.2023.11.041
Elsawy, A., Eleiwa, T., Chase, C., Ozcan, E., Tolba, M., Feuer, W., . . . Abou Shousha, M. (2021. gada June). Multidisease Deep Learning Neural Network for the Diagnosis of Corneal Diseases. American Journal of Ophthalmology, 226, 252–261. doi:10.1016/j.ajo.2021.01.018
Kingsley, L. J., Brunet, V., Lelais, G., McCloskey, S., Milliken, K., Leija, E., . . . Spraggon, G. (2019. gada June). Development of a virtual reality platform for effective communication of structural data in drug discovery. Journal of Molecular Graphics and Modelling, 89, 234–241. doi:10.1016/j.jmgm.2019.03.010
Legetth, O., Rodhe, J., Lang, S., Dhapola, P., Wallergård, M., & Soneji, S. (2021. gada November). CellexalVR: A virtual reality platform to visualize and analyze single-cell omics data. iScience, 24, 103251. doi:10.1016/j.isci.2021.103251
Liang, L., Liu, M., Elefteriades, J., & Sun, W. (2023. gada August). PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. Computer Methods and Programs in Biomedicine, 238, 107616. doi:10.1016/j.cmpb.2023.107616
Lv, Z., Tek, A., Da Silva, F., Empereur-mot, C., Chavent, M., & Baaden, M. (2013. gada March). Game On, Science - How Video Game Technology May Help Biologists Tackle Visualization Challenges. (P. Taylor, Red.) PLoS ONE, 8, e57990. doi:10.1371/journal.pone.0057990
Ma, H., Xiao, S., Dong, D., & Petersen, I. R. (2023). Tomography of quantum detectors using neural networks. IFAC-PapersOnLine, 56, 5875–5880. doi:10.1016/j.ifacol.2023.10.088
Malard, F., Danner, L., Rouzies, E., Meyer, J. G., Lescop, E., & Olivier-Van Stichelen, S. (2022. gada July). EpyNN: Educational python for Neural Networks. SoftwareX, 19, 101140. doi:10.1016/j.softx.2022.101140
Patwardhan, A., Ashton, A., Brandt, R., Butcher, S., Carzaniga, R., Chiu, W., . . . Kleywegt, G. J. (2014. gada October). A 3D cellular context for the macromolecular world. Nature Structural & Molecular Biology, 21, 841–845. doi:10.1038/nsmb.2897
Phillips, J. C., Hardy, D. J., Maia, J. D., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., . . . Tajkhorshid, E. (2020. gada July). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153. doi:10.1063/5.0014475
Sahu, M., Gupta, R., Ambasta, R. K., & Kumar, P. (2024. gada April). IoT-driven augmented reality and virtual reality systems in neurological sciences. Internet of Things, 25, 101098. doi:10.1016/j.iot.2024.101098
Samant, S., Bakhos, J. J., Wu, W., Zhao, S., Kassab, G. S., Khan, B., . . . Chatzizisis, Y. S. (2023. gada October). Artificial Intelligence, Computational Simulations, and Extended Reality in Cardiovascular Interventions. JACC: Cardiovascular Interventions, 16, 2479–2497. doi:10.1016/j.jcin.2023.07.022
Suh, H. S., Kweon, C., Lester, B., Kramer, S., & Sun, W. (2023. gada September). A publicly available PyTorch-ABAQUS UMAT deep-learning framework for level-set plasticity. Mechanics of Materials, 184, 104682. doi:10.1016/j.mechmat.2023.104682
Varangot-Reille, C., Sanger, G. J., Andrews, P. L., Herranz-Gomez, A., Suso-Martí, L., de la Nava, J., & Cuenca-Martínez, F. (2023. gada March). Neural networks involved in nausea in adult humans: A systematic review. Autonomic Neuroscience, 245, 103059. doi:10.1016/j.autneu.2022.103059
Xiao, J., Huang, L., Song, Y., & Tang, N. (2023. gada May). A Recursive tree-structured neural network with goal forgetting and information aggregation for solving math word problems. Information Processing & Management, 60, 103324. doi:10.1016/j.ipm.2023.103324
Zhao, C., Wang, H., Qi, W., & Liu, S. (2022. gada November). Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network. Methods, 207, 81–89. doi:10.1016/j.ymeth.2022.09.005
Zinchenko, S., & Lishudi, D. (2024. gada February). Star algorithm for neural network ensembling. Neural Networks, 170, 364–375. doi:10.1016/j.neunet.2023.11.020
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ivan Trenchev, Tereza Trencheva, Vladimir Angelov, Yordan Spirov, Yana Karshiyska, Kamelia Shumanova
This work is licensed under a Creative Commons Attribution 4.0 International License.