HEAT SOURCE FOR TIG WELDING MODELLING

Authors

  • Manahil Tongov Faculty of Idustrial Technology, Technical University of Sofia, Center of Welding Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre “Acad. A. Balevski” Bulgarian Academy of Sciences (BG)

DOI:

https://doi.org/10.17770/etr2021vol3.6601

Keywords:

TIG welding, modelling, heat source, calibrating parameters, calibrating methods, experimental results

Abstract

A new model of heat source applicable to TIG welding is proposed. The model uses three calibration parameters - efficiency, effective heating spot radius and heat source concentration factor. Based on the experimental results, the model was calibrated and the results obtained for the form of penetration were compared with the experimental ones.

Supporting Agencies
This work was made possible by a project KP-06-N37/31, funded by the NSF.

Downloads

Download data is not yet available.

References

Huang Pengfei, Li Yan , Lu Yangyang and Lu Zhenyang, Numerical simulation of the temperaturbe filed in fixed-TIG welding pool, 2011 International Conference on Modeling, Simulation and Control, IPCSIT vol.10 (2011) © (2011) IACSIT Press, Singapore

De Freitas Teixeira, P. R., De Araújo, D. B., & Da Cunha, L. A. B. (2014). Study of the gaussian distribution heat source model applied to numerical thermal simulations of tig welding processes. Ciencia y Engenharia/ Science and Engineering Journal, 23(1), 115-122. doi:10.14393/19834071.2014.26140

LIU, H. and NIU, L., 2015. Finite element simulation research on medium plate multi-pass welding temperature field. The Open Mechanical Engineering Journal, 2015, Volume 9, pp.786-790

ISMAIL, M.I.S. and AFIEQ, W.M.A., 2016. Thermal analysis on a weld joint of aluminium alloy in gas metal arc welding. Advances in Production Engineering and Management, Volume 11 | Number 1 | March 2016 | pp 29–37, ISSN1854‐6250

ZHANG, M., ZHOU, Y., HUANG, C., CHU, Q., ZHANG, W. and LI, J., 2018. Simulation of temperature distribution and microstructure evolution in the molten pool of GTAW Ti-6Al-4V alloy. Materials 2018, 11(11), 2288; https://doi.org/10.3390/ma11112288

Wróbel, J., & Kulawik, A. (2019). Prediction of the superficial heat source parameters for TIG heating process using FEM and ANN modeling. Entropy, 21(10) doi:10.3390/e21100954

YAMANE, S., YAMAZAKI, T., KANETA, T., NAKAJIMA, T. and YAMAMOTO, H., 2011. Experiment and numerical simulation in temperature distribution and welding distortion in GMA welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 29(3), (2011) pp. 31s-34s., https://doi.org/10.2207/qjjws.29.31s

BJELIĆ, M.B., KOVANDA, K., KOLARIK, L., VUKIĆEVIĆ, M.N. and RADIČEVIĆ, B.S., 2016. Numerical modeling of two-dimensional heat-transfer and temperature-based calibration using simulated annealing optimization method: Application to gas metal arc welding. Thermal Science, 20(2), pp. 655-665, doi:10.2298/TSCI150415127B

Alexandre Campos Bezerra, Domingos Alves Rade and Américo Scotti, FINITE ELEMENT SIMULATION OF TIG WELDING: THERMAL ANALYSIS, 18th International Congress of Mechanical Engineering, November 6-11, 2005, Ouro Preto, MG, Proceedings of COBEM 2005

M. Afzaal Malik, M. Ejaz Qureshi and Naeem Ullah Dar, Numerical Simulation of Arc Welding Investigation of various Process and Heat Source Parameters, MED UET Taxila (2007), pp 127÷142

Pablo Batista Guimarães et all, OBTAINING TEMPERATURE FIELDS AS A FUNCTION OF EFFICIENCY IN TIG WELDING BY NUMERICAL MODELING, 21st Brazilian Congress of Mechanical Engineering October 24-28, 2011, Natal, RN, Brazil, Proceedings of COBEM 2011, DOI: http://dx.doi.org/10.5380/reterm.v10i1-2.61952

Djarot B. Darmadi, Validating the accuracy of heat source model via temperature histories and temperature field in bead-on-plate welding, International Journal of Engineering & Technology October 2011 IJENS Vol: 11 No: 05

DA NÓBREGA, J., SILVA, D., ARAÚJO, B., DE MELO, R., MACIEL, T., SILVA, A. and DOS SANTOS, N., 2014. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints. International Journal of Multiphysics, 8(3), pp. 337-348.

PAMNANI, R., VASUDEVAN, M., JAYAKUMAR, T., VASANTHARAJA, P. and GANESH, K.C., 2016. Numerical simulation and experimental validation of arc welding of DMR-249A steel. Defence Technology, Volume 12, Issue 4, August 2016, Pages 305-315, https://doi.org/10.1016/j.dt.2016.01.012

Piekarska, W., & Rek, K. (2017). Numerical analysis and experimental research on deformation of flat made of TIG welded 0H18N9 steel. Paper presented at the Procedia Engineering, , 177 182-187. doi:10.1016/j.proeng.2017.02.217 Retrieved from www.scopus.com

Rui-ying Li, Chunyu Chen, Dawei Zhao and Chunmei Wu, Determination and Application of Double Ellipsoid Heat Source Model, International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2017), Advances in Engineering Research, volume 125, pp. 267÷270, https://doi.org/10.2991/mseee-17.2017.49

YAN, C., JIANG, H., WU, L., KAN, C. and YU, W., 2018. Numerical simulation of temperature field in multiple-wire submerged arc welding of X80 pipeline steel, IOP Conference Series: Earth and Environmental Science 108 022048, 2018

P.Ferro, F. Berto, F. Bonollo and R.Montanari, Experimental and numerical analysis of TIG-dressing applied to a steel weldment, Procedia Structural Integrity Volume 9, 2018, Pages 64-70, https://doi.org/10.1016/j.prostr.2018.06.012

Huang, H., Yin, X., Feng, Z., & Ma, N. (2019). Finite element analysis and in-situ measurement of out-of-plane distortion in thin plate TIG welding. Materials, 12(1) doi:10.3390/ma12010141

Matuszewski, M. (2019). Modeling of 3D temperature field in butt welded joint of 6060 alloy sheets using the ANSYS program. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 659(1) doi:10.1088/1757-899X/659/1/012034

ZUO, S., WANG, Z., WANG, D., DU, B., CHENG, P., YANG, Y., ZHANG, P. and LANG, N., 2020. Numerical simulation and experimental research on temperature distribution of fillet welds. Materials 2020, 13(5), 1222; https://doi.org/10.3390/ma13051222

A.MOARREFZADEH and M.A.SADEGHI, Numerical Simulation of Thermal Profile By Gas Tungsten Arc Welding Process in Copper, WSEAS TRANSACTIONS on HEAT and MASS TRANSFER, Issue 3, Volume 5, July 2010, ISSN: 1790-504

SAADLAOUI, Y., FEULVARCH, É., DELACHE, A., LEBLOND, J.-. and BERGHEAU, J.-., 2018. A new strategy for the numerical modeling of a weld pool. Comptes Rendus - Mecanique, Volume 346, Issue 11, November 2018, Pages 999-1017, https://doi.org/10.1016/j.crme.2018.08.007.

FLINT, T.F. and SMITH, M.C., 2019. HEDSATS: High energy density semi-analytical thermal solutions. SoftwareX, Volume 10, July–December 2019, 100243, https://doi.org/10.1016/j.softx.2019.100243

Karim Agrebi, Asma Belhadj and Mahmoud Bouhafs, THREE-DIMENSIONAL NUMERICAL SIMULATION OF A GAS TUNGSTEN ARC WELDING PROCESS, IJTech 2019, International Journal of Technology 10(4) pp. 689-699, ISSN 2086-9614, DOI: https://dx.doi.org/10.14716/ijtech.v10i4.1849

https://www.acerinox.com/en/productos/stainless-steel-grade/EN-1.4301---AISI-304-00001/

(http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ304A)

https://www.researchgate.net/figure/a-Thermal-conductivity-kT-as-a-function-of-temperature-for-SS-304-40-b-Specific_fig2_318688478

Manahil Tongov, Rayna Dimitrova and Konstantin Konstantinov, Bead formation research in TIG welding of AISI 304 steel, 9-TH INTERNATIONAL SCIENTIFIC CONFERENCE “ENGINEERING, TECHNOLOGIES AND SYSTEMS”, TECHSYS 2020, 14-16 May, Plovdiv, Bulgaria, IOP Conf. Series: Materials Science and Engineering 878 (2020) 012054, doi:10.1088/1757-899X/878/1/012054

Downloads

Published

2021-06-16

How to Cite

[1]
M. Tongov, “HEAT SOURCE FOR TIG WELDING MODELLING”, ETR, vol. 3, pp. 348–356, Jun. 2021, doi: 10.17770/etr2021vol3.6601.