THE MODEL OF THE CONSTRICTION RESISTANCE OF A SLIDING ELECTRICAL CONTACT

Authors

  • Igor Plokhov Department of Drive and Automation System, Pskov State University (RU)
  • Igor Savraev Department of Drive and Automation System, Pskov State University (RU)
  • Alexander Markov Department of Drive and Automation System, Pskov State University (RU)
  • Oksana Kozyreva Department of Drive and Automation System, Pskov State University (RU)
  • Nikita Kotkov Department of Drive and Automation System, Pskov State University (RU)
  • Yulia Domracheva Department of Drive and Automation System, Pskov State University (RU)

DOI:

https://doi.org/10.17770/etr2019vol3.4071

Keywords:

brush, experimental plant, modeling, sliding contact

Abstract

This article is devoted to a theoretical study of the processes in a sliding electrical contact and the derivation of the formula for constriction resistance in the transient layer of electrical sliding contact taking into account the fractal heterogeneity of contact current-transmitting clusters, as well as the verification of the obtained theoretical formulas using a static experimental plant.

Downloads

Download data is not yet available.

References

Holm R. Electric contacts handbook. Landkof N.S. Foundations of Modern Potential Theory, Berlin, Springer, 1973, 424 p.

Merl W. Elektricheskiy kontakt [Electric Contact]. – М.-L., Gosenergoizdat Publ, 1962. (in Russian).

Haken, H. Synergetik. Berlin, Heidelberg, New York, Springer Verlag, 1981. 382 p.

Mandelbrot B.B. The fractal geometry nature. N.Y., Freeman, 1983. 480 p.

Feder J. Fractals. New York, Plenum Press, 1988, 283 p.

Smirnov B.М. Fizika fraktal‘nykh klasterov. [Physics of fractal clusters]. Мoscow, Nauka Publ., 1991. 136 p. (in Russian).

Omel‘chenko V.Т. Teoriya protsesov na kontaktakh. [Theory of processes at the contacts]. Kharkov. KhGU, Vishcha shkola Publ. 1979. 126 p. (in Russian).

Reutt Е.К., Saksonov I.N. Elektricheskie kontakty. [Electric contacts]. М. Voenizdat. 1971. 126 p. (in Russian).

Konchits V.V., Meshkov V.V., Мyshkin V.V. Tribotekhnika elektricheskikh kontaktov. [Tribotechnique of electrical contacts]. Minsk: Nauka i tekhnika Publ. 1986. 255 p. (in Russian)

Kim Е.I., Omel'chenko V.Т., Harin S.N. Matematicheskie modeli teplovykh prozessov v elektricheskikh kontaktakh. [Mathematical models of thermal processes in electrical contacts]. Alma-Ata: Nauka Publ. 1977. 236 p. (in Russian).

Ivanova V. S., Balankin А. S., Bunin I. Zh., Oksogoev А. А. Sinergetika i fraktaly v materialovedenii. [Synergetics and fractals in materials science]. Мoscow, Nauka Publ., 1994. 384 p. (in Russian).

Fraktaly v fizike [Fractals in Physics] Trudy VI mezhdunarodnogo simpoziuma po fraktalam v fizike. Мoscow, Мir Publ., 1988. 672 p. (in Russian).

Vaimann T., Rassõlkin A., Gevorkov L., Kallaste A., Kozyreva O., Plokhov I., Kotkov N., Savraev I., Ilyin A. Reducing Sparking in the Transient Layer of the Sliding Electrical Contact Unit. In: L. Radil, J. Macháček, J. Morávek (Ed.). 19th International Scientifc Conference on Electric Power Engineering (EPE) (223−227). Brno: IEEE. 2018

Plokhov I.V. Kompleksnaya diagnostika i prognozirovanie tekhnicheskogo sostoyaniya uzlov skolzyashchego tokos“ema turbogeneratorov. Doct.Diss. [Complex diagnostics and forecasting of the technical condition of the sliding electrical contact unit of turbo-generators. Doct. Diss.] Sankt-Petersburg. 2001. 362 p. (in Russian).

Plokhov I.V. Model‘ dinamiki tokoperedachi cherez skolzyashchiy kontakt. [Dynamic model of current transfer through a slipping contact]. Elektrotekhnika [Electrical Engineering], 2005, no. 2, pp. 28-33. (in Russian).

Plokhov I.V. Issledovanie soprotivleniya styagivaniya elektricheskogo kontakta. [Investigation electric contact contraction resistance]. Elektrotekhnika [Electrical Engineering], 2004, no. 5, pp. 13-18. (in Russian)

Plokhov I.V. Klasternaya model elektrofriktsionnogo vzaimodeystviya (EFV). [Cluster model of electro-friction interaction]. Trudy Pskovskogo politekhnicheskogo instituta. S.-Peterburg/Pskov, SPbGTU Pub., 1997, no. 1. pp. 55-57. (in Russian)

Greenwod J.A. Constriction resistance and the real area of contact. – British Journal off appl. Physics. 1966. V.17. p.1621-1631.

Plokhov I.V., Savraev I.E. И.Е. Vychislitelnaya model razvitiya perkolyacionnykh klasterov kontaktnoy provodimosti. [Computational model of development of percolation contact conductivity clusters.]. Trudy Pskovskogo politekhnicheskogo instituta. S.-Peterburg/Pskov. SPbGTU, 1997, no.1, pp.51-54. (in Russian)

Shklovskiy B.I., Efros А.L. Teoriya protekaniya i provodimost' sil'no neodnorodnykh sred [Flow theory and conductivity of highly inhomogeneous mediums]. Uspekhi fizicheskikh nauk. [Advances in the physical sciences]. vol.117, no. 3. 1975. pp.401–435. (in Russian)

Yip F.C., Venart J.E.S. Surface topography effects in the estimation of thermal and electrical contact resistance. – In: Proc. Inst. Mech. Eng., 1968. vol. 182. Pt. 3K. p. 81.

Anca Sorana Popa, Veronica Argeşanu. Tribologic aspects concerning the contact surface roughness, in ase of sliding electric contacts. The annals of University “Dunărea de jos “ of gala ti fascicle VIII, 2004. ISSN 1221-4590 TRIBOLOGY pp. 127-131.

Ilyin A., Plokhov I., Savraev I., Kozyreva O., Kotkov N. Forming and overlapping microreliefs in sliding contact simulation model – Vide. Tehnologija. Resursi - Environment, Technology, Resources. 2017.

Downloads

Published

2019-06-20

How to Cite

[1]
I. Plokhov, I. Savraev, A. Markov, O. Kozyreva, N. Kotkov, and Y. Domracheva, “THE MODEL OF THE CONSTRICTION RESISTANCE OF A SLIDING ELECTRICAL CONTACT”, ETR, vol. 3, pp. 201–207, Jun. 2019, doi: 10.17770/etr2019vol3.4071.