POWER MODEL OF IMPULSE ARC DISCHARGE GENERATION IN ACTIVE MEDIA OPTICAL PUMPING XENON LAMPS OF SOLID-STATE LASERS
DOI:
https://doi.org/10.17770/etr2019vol3.4061Keywords:
expanded xenon non-equilibrium plasma channel, impulse direct xenon lampAbstract
The semi-empirical model of arc impulse discharge development in impulse xenon lamps for optical pumping of solid-state lasers' active media was considered. Equations of the power balance of supplied electrical power and processes of ionization, plasma heating, heat dissipation and optical radiation generation laid the model's basis. The analytical description of the processes being considered results in an ordinary differential equation which allows a non-resource-intensive numerical solution. The built model enables to evaluate basic electrical and optical parameters of non-local arc discharge plasma at its development stage. Comparison with the results of measurements of electrical and optical plasma parameters which are the most convenient for experimental diagnostics in the modelled non-stationary mode testifies to adequacy of the developed model. Relative simplicity and convenience of the model predetermines its possible usage when solving applied engineering tasks of optimization of operating parameters of impulse pumping lamps and for obtaining initial (zero) approximations for comprehensive modelling of a non-local non-stationary gas discharge plasma in science-intensive calculations taking into account a great combination of elementary collision and radiation processes in a non-equilibrium system.Downloads
References
I.D. Kaganovich, V.I. Demidov, S.F. Adams and Y. Raitses, “Nonlocal collisionless and collisional electron transport in low-temperature plasma (invited paper)”, Plasma Physics and Controlled Fusion, vol. 51, p. 124003, 2009.
A.A. Kudryavtsev, A.S. Smirnov, L.D. Tsendin, Glow discharge physics. SPB: Lan', 2010.
A. Chirtsov, A. Kudryavtsev, E. Bogdanov, "Fluxes of Charged Particles in Two-Chamber ICP Discharge in Oxygen", Accepted to EEE Transactions on Plasma Science Special Issue, Images in Plasma Science, v.39, N8, Р. 2562-2563, 2011.
E.A. Bogdanov, A.S. Chirtsov, A.A. Kudryavtsev, "Fundamental non-ambipolarity of electron fluxes in 2D plasmas", Phys. Rev. Lett., Vol. 106, pp. 195001, 2011.
K. Kapustin, A. Kudryavtsev, E. Bogdanov, A. Chirtsov, "Non-local behavior of electron fluxes and excitation rates for “local” EEDF in moderate and high pressures DC positive column plasmas", Imag. Plasma Sci., Vol. 39, pp.180-183, 2011.
S.I. Eliseev, V.I. Demidov, A.A. Kudryavtsev, V.I. Kolobov, E.A. Bogdanov, A.S. Chirtsov, "Impulse breakdown modelling in helium using adaptive methods", J. Sci.-techn. Bull. Inf. Techn., Mech. Opt., Vol. 5, pp.139-146, 2014.
A.S. Chirtsov, V.M. Mikushev, E.V. Lebedeva, S.V. Sychov, "Numerical Simulation of Glow Discharge in Air Mixtures under Low Pressure Conditions", Int. J. Appl. Eng. Res., Vol. 11, pp. 11836-11846, 2016.
H. Mahadevan, L.L.Raja, "Simulations of direct-current airglow discharge at pressures 1 Torr: discharge model validation", J. Appl. Phys., Vol. 107, pp. 093304, 2010.
T. Makabe, T. Tatsumi, "Workshop on atomic and molecular collision data for plasma modelling: Database needs for semiconductor plasma processing", Plasma Sources Science and Technology, vol. 20, n.2, 2011. https://doi.org/10.1088/0963-0252/20/2/024014.
L.A. Weinstein, I.I. Sobelman, E.A. Yukov. Atom excitation and widening of spectral lines. M.: Science, 1979.
S.V. Sychov, A.S. Chirtsov "Genetic algorithm as a means of solving a radial Schrödinger equations system" presented at 19th International Conference on Soft Computing and Measurements, SCM, St. Petersburg, Russia, 2016
M.V. Chernysheva, A.S. Chirtsov, D.A. Shvager, "Comparative analysis of plasma chemical models for computer simulation of glow discharges in air mixtures", Sci.-Techn. Bull. Inf. Techn., mech. Opt., Vol. 16, pp. 903-916, 2016.
Jr. De Joseph "Non-local effects in a bounded low-temperature plasmas with fast electrons", Phys. Plasmas, Vol. 14, pp. 057101, 2007.
E.A. Bogdanov, K.D. Kapustin, A.A. Kudryavtsev, A.S. Chirtsov, "Comparison of various options of hydrodynamic (fluid) modelling of a longitudinal structure of atmospheric pressure micro-discharge in helium", Techn. Phys. J., Vol. 80, pp. 41-53, 2010.
E.A. Bogdanov, A.A. Kudryavtsev, N. Ochikova, "Violation of Boltzmann distribution for plasma electron density in two-chamber ICP-discharges", Techn. Phys. J., Vol. 85, pp. 155-158, 2015.
A.S. Chirtsov, S. Eliseev, A. Kudryavtsev, H.N. Liu, Y.D. Zhongxi, "Transition from Glow Microdischarge to Arc Discharge with Thermionic Cathode in Argon at Atmospheric Pressure", IEEE Trans. Plasma Sci. Special Iss. – Atmosph. Press. Plasmas Appl., Vol. 44, pp. 2536-2544, 2016.
Comsol 4.0a Plasma module user guide // HUMUSOFT [Web-site] [Online]. URL: https://www.humusoft.com/comsol/ (Accessed January 2019).
S.I. Eliseev, V.I. Demidov, A.A. Kudryavtsev, V.I. Kolobov, E.A. Bogdanov, A.S. Chirtsov, "Impulse breakdown modelling in helium using adaptive methods", J. Sci.-techn. Bull. Inf. Techn., Mech. Opt., Vol. 5, pp. 139-146, 2014.
ILC Engineering Note No. 152 (Use of Xenon Short Arcs as Pulsed Light Sources), ILC Technology, 399 West Java Drive, Sunnyvale, CA 94089.
G.N. Rokhlin. Discharge light sources. Moscow: Energoatomizdat, 1991.
Xenon Flash Lamps, Technical Literature TLSX1008E04, Hamamatsu Photonics K.K., 1998.
Super Quiet Xenon Lamps, Technical Literature TLSX1002E06, Hamamatsu Photonics K.K, 2000.
W. Koechner Solid-State Laser Engineering. Sixth revised and updated edition. Germany:Springer, 2006.
A.A. Mak, N.L. Soloviev. Introduction in high-temperature laser plasma physics. Leningrad: LSU, 1991.
W.J. O'Brian, G.L. Hunter, J.J. Rosson, R.A. Hulsey, K.E. Carns, "Ultraviolet system design: past, present and future", in : Proceedings Water Quality Technology Conference, AWWA, New Orleans, LA., 1995, pp. 271-305.
J. Dunn, A. Bushnell, W. Ott. & Clark, "Pulsed white light food processing", Cereal Foods World, Vol. 42, pp. 510-515, 1997.
J. Dunn, D. Burgess, F. Leo, "Investigation of pulsed light for terminal sterilization of WFI filled blow/fill/seal polyéthylène containers. Parenteral Drug Assoc.", J. Pharm. Sci. & Tech., Vol. 51, pp. 111-115, 1997.
High-voltage engineering. Gas discharge process physics. St.-Petersburg: SPBSTU, 1999.
S.K. Zhdanov, V.A. Kurnaev et al. Fundamentals of physical processes in plasma and plasma units. Moscow: MSIPI, 2000.
A. G. Grigoryants, I. N. Shiganov. A. M. Chirkov. Hybrid laser welding technologies. Moscow: Publ. Bauman's MSTU, 2004.
A. Mimouni, "Inactivation microbienne par lampes flash ou lumière pulsée", La Lettre - Traitements de surfaces, Vol. 10, pp. 21-25, 2004.
F. Fine, P. Gervais, "Efficiency of pulsed UV light for microbial decontamination of food Powders", J. Food Protection, Vol. 67, pp. 787-792, 2004.
B. Mrabet, H. Elloumi, A. Chammam, M. Stambouli, G. Zissis, "Effect of a pulsed power supply on the ultraviolet radiation and electrical characteristics of low pressure mercury discharge" Plasma Devices and Operations, Vol.14, pp. 249– 259, 2006.
L. Bouslimi, A. Chammam, M. Ben Mustapha, M. Stambouli, J.P. Cambronne, "Simulation and Experimental Study of an Electronic Pulsed Power Supply for HID Lamps Intended for Photochemical Applications", Int. Rev. Electrical Eng. (IREE), Vol. 4, pp. 799-808, 2009.
L. Bouslimi, A. Chammam, M. Ben Mustapha, M. Stambouli, J.P. Cambronne, "Electric and spectral characterization of a high pressure mercury lamp used in the photochemical treatment", Int. J. Sci. Techn. Automatic Control Comp. Eng. (IJ-STA), Vol. 3, pp. 1064-1071, 2009.
I.S. Marshak. Pulse light sources. Moscow: Energiya, 1978.
Y.A. Mandryko, "Electrical circuit with switching IGBT-transistors for gas discharge lamps", Adv. Electronics, Vol. 7, pp. 64-69, 2015.