APPLICATION OF CLUSTERING METHOD IN THE RBF NEURAL NETWORKS
DOI:
https://doi.org/10.17770/etr2001vol1.1928Keywords:
RBF neural network, clustering, K-meansAbstract
This paper describes one of classification algorithms, cluster analysis, that plays a significant role in the implementation of learning algorithm as applied to RBF-type artificial mural networks. The mathematical description of the K-means clustering algorithm is given and its implementation is demonstrated by experiment.Downloads
Download data is not yet available.
References
Hush D.R., Horne B.G. Progress in Supervised Neural Networks. What’s new since Lippmann?, IEEE Signal Processing Magazine, January, 1993, vol.l0,No 1.
Статистические методы для ЭВМ. - Москва: Наука, 1986.
Панкова Л.А., Трахтенгерц Э.А. Субъективность в интелектуальном анализе данных. - Москва: Препринт/Институт проблем управления, 1999.
Downloads
Published
2001-06-20
Issue
Section
Computer Technology
How to Cite
[1]
P. Grabusts, “APPLICATION OF CLUSTERING METHOD IN THE RBF NEURAL NETWORKS”, ETR, vol. 1, pp. 257–262, Jun. 2001, doi: 10.17770/etr2001vol1.1928.