ANALYSIS OF EARTHQUAKES AVAILABLE INFLUENCE ON „ESTONIA” MINE UNDERGROUND CONSTRUCTION STABILITY

Authors

  • Oleg Nikitin Eesti Polevkivi Ltd (EE)
  • Sergei Sabanov Tallinn University of Technology (EE)
  • Jyri-Rivaldo Pastarus Tallinn University of Technology (EE)

DOI:

https://doi.org/10.17770/etr2007vol1.1734

Keywords:

earthquake, mining block, pillar, roof, stability, risk estimation

Abstract

The processes of immediate roof exfoliation and pillars collapse accompanies by significant subsidence of the ground surface. Ground surface subsidence causes soil erosion and flooding, swamp formation, agricultural damage, deforestation, changes in landscape, ground water level decreasing and the formation unstable cavities. During experimental measurement of immediate roof absolute deformation on "Estonia" mine three earthquakes were registered. The main reason of investigation has served jumping characteristic of absolute deformation near a pillar after earthquake. Method of final elements for analysis of deformation modelling is used. Seismic risk assessment for underground constructions stability is presented in this study.

Downloads

Download data is not yet available.

References

Pastarus, J.R.; Sabanov, S. (2005). A method for securing working mining block stability in Estonian oil shale mines. Proceedings of the Estonian Academy of Sciences. Engineering, 11(1), 59 - 68.

Tomberg. T. (1998). Lohketoodest pohjustatud maavongete analiius polevkivikaevandamisel., TTU, Magistritoo, UDK 622.235 AKM84LT, Tallinn, lk. 16.

Fadeev, A.B., Glosman, L., Kartuzov, M.I. (1987). Seismic control of mine and quarry blasting in USSR, Proc. 6 th International Congress of Rock Mechanics, ISRM, Montreal, Canada, pp. 617-619.

Singh, S.P., Narendrula, R. (2004). Assessment and prediction of rock mass damage by blast vibrations, In: MPES 2004 proceedings, Wroclaw, Poland, 1-3 September, 2004, p. 317-322.

Талве, Д , Самлан, Ю., Рейнсалу, Э. и др. (1964). Усовершенствование системы разработки короткими механизированными забоями с валовой выемкой и механическим обогащением на сланцевых шахтах. Раздел III. Исследование различных вариантов камерной системы разработки. Институт Сланцев, Кохтла-Ярве.

Seismic velocity of Narva Pit., 2003. In report: Optimum fleet recommendation, OFR service. Hyd. Excavator & Global Sourcing Marketing Unit Komatsu Europe International n.v. (Koji Ito), KEHG02-2068. http://www.geometrics.com/mcseis-d/mcseis-d.html

Широков, А.П., Лидер, B.A., Писляков, Б.Г. (1976). Расчет анкерной крепи для различных условий применения. М., “Недра”, 1976, 208 с.

http://www.emsc-csem.org

http://www.geo.mtu.edu/UPSeis/intensitv.html

http://www.eas.purdue.edu/~braile/edumod/eqhazard/eqhazardl.htm

http://www.ime.org/calculator/

http://www.seismo.helsinki.fi

http://www.georec.spb.ru

Nikitin, О., Sabanov, S. (2005). Immediate roof stability analysis for new room-and-pillar mining technology in “Estonia” mine. In: Proc. 5th International conference “Environment. Technology. Resources", Rezekne, June 16-18, 2005.

Downloads

Published

2007-06-23

How to Cite

[1]
O. Nikitin, S. Sabanov, and J.-R. Pastarus, “ANALYSIS OF EARTHQUAKES AVAILABLE INFLUENCE ON „ESTONIA” MINE UNDERGROUND CONSTRUCTION STABILITY”, ETR, vol. 1, pp. 78–84, Jun. 2007, doi: 10.17770/etr2007vol1.1734.