THE ESTIMATION OF ERRORS OF AREA MODELS DESCRIBED BY THE SHAPE FUNCTIONS BY THE MEANS OF NEURAL NETWORKS
DOI:
https://doi.org/10.17770/etr2007vol1.1733Keywords:
neural networks, gradient methods of optimalization, approximation methodAbstract
The article deals with the issue of estimation of the area models errors determined on the basis of a discrete points set with the given values of space coordinates (x, y, z). The object was assumed to be described by shape functions in the form of the elliptic paraboloid and the hyperbolic paraboloid. The digital task accomplishment consisted in the statistic verification of errors of the models determined by neural networks and by the accomplishment of adjustment tasks. Modeling by the means of neural networks was carried out by the unidirectional multilayer networks with the application of gradient methods of optimalization and by Resilientback Propagation algorithm (RPROP). The obtained results were compared with the following results of approximation of the second and the third degree of polynomial, the b-spline function and the kriging’s method.
Downloads
References
Duch W., Korbicz J., Rutkowski L., Tadeusiewicz R., Sieci neuronowe, Akademicka Oficyna Wydawnicza Exit, Warszawa 2000.
Faulkner J., Einfuhrung in Neuronale Netze, Universitat Tubingen 2001.
Nowak E., Estymacja i weryfikacja numerycznego modelu terenu. XI Konf. Naukowo – Techniczna „Systemy Informacji Przestrzennej”, Warszawa 28 - 30 maj 2001.
Nowak E., Wyznaczanie ksztaltu poprzez estymacj? bl^dow pomiaru i modelu. V Konf. Naukowo - Techniczna „Problemy Automatyzacji w Geodezji Inzynieryjnej”, Warszawa 29 - 30 marca 2001.
Osowski S., Sieci neuronowe w uj?ciu algorytmicznym. WNT, Warszawa 1996.
Riedmiller M, Braun H., A fast adaptive learning algorithm, Technical Report, University Karslruhe, Germany 1992.