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Abstract. Fruit yield estimation and forecasting are essential 
processes for data-based decision-making in agribusiness to 
optimise fruit-growing and marketing operations. The yield 
forecasting is based on the application of historical data, 
which was collected in the result of periodic yield estimation. 
Meanwhile, the object detection methods and regression 
models are applied to calculate yield per tree. The application 
of powerful neural network architectures for rapid 
prototyping is a common approach of modern artificial 
intelligence engineering. Meanwhile, the most popular object 
detection solution is YOLO architecture. Our project team 
collected the dataset of fruiting pear tree photographs 
(Pear640) and trained YOLOv5m with mAP@0.5 95% and 
mAP@0.5:0.95 56%. The obtained results were compared 
with other YOLOv5-7.0 and YOLOv7 models and similar 
studies. 

Keywords: artificial intelligence, deep learning, smart 
horticulture, yield estimation. 

INTRODUCTION 
Pears are the third most economically important fruit 

crop globally [1], [2], reaching 25.7 million tons in 2021 
[3]. Although it is not the most important fruit crop in 
Latvia, it forms a very important niche product with high 
added value, and the area of pear growing is about 200 ha 
[4]. Pear growing faces various challenges beyond our 
control: environmental conditions and their changes and 
biotic factors such as diseases and pests. The grower's 

options are choosing appropriate cultivars, adjusting 
cultivation technologies to reduce environmental impact, 
and obtaining the optimal yield. One of the solutions is the 
development of a yield model, in which by changing the 
parameters of the yield-forming components and the 
applied agrotechnical practice, it is possible to predict the 
potential yield and evaluate how a change in a specific 
agrotechnical technique could affect it. Considering pear 
orchards' longevity and induced effects' time lag, such a 
forecasting system can significantly assist growers in their 
decision-making process. Timely and accurate prediction 
of fruit yield is also of great economic importance to 
optimally plan post-harvest activities, storage facilities 
and sales. Developing such yield forecasting systems has 
been going on for a long time for various fruit plant species 
[5]. For example, for apples, the 'Bavendorf' yield forecast 
model is still recognized as the best one, which is based on 
such parameters as the characteristics of the analyzed trees 
(cultivar, rootstock, orchard age), orchard characteristics 
(slope, elevation and area), the fruit-set density in the 
given year and the average fruit mass at a harvesting time 
[6]. However, the disadvantage of all these forecasting 
systems is the need for high-quality, large-scale data 
because the accuracy of the developed model and the 
correspondence of the forecasted and real harvested yield 
depend on it [7]. Manual collection of such data is time-
consuming and complex and may be affected by the 
subjectivity of the evaluator, which in turn may affect the 
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usefulness of the forecasting system. Therefore, tools that 
provide accurate and automated evaluation of 
characteristics involved in pear fruit development should 
be developed, including through pear imagining. 

YOLO (“You Only Look Once”) is a well known and 
popular object detection architecture, which was firstly 
presented in 2016 [8]. The advantage of YOLO is its 
unified architecture with real-time image processing 
speed. The previous solutions were based on a sliding-
window approach or the region proposals. 

YOLO is a complex system, which can have minor and 
major improvements. At this moment, there are many 
versions of YOLO architecture, which are developed by 
different authors. For example, YOLOv4 is based on 
CSPDarknet53 backbone, Spatial pyramid pooling (SPP) 
additional module, PANet path-aggregation neck, and 
YOLOv3 (anchor based) head [9]. YOLOv5 is relatively 
similar to YOLOv4, the focus layer can be mentioned as 
the difference [10]. Meanwhile, YOLOv5 has 
technological advantages such as PyTorch framework, 
code readability, easy configuration of environment and 
other user-friendly things [11]. Speaking about YOLOR, 
it was based on the new concept with a unified model, 
which connected explicit and implicit knowledge [12]. At 
the beginning of 2023, YOLOv7 [13] and YOLOv8 [14] 
can be mentioned as the youngest architectures. YOLOv7 
presented Extended Efficient Layer Aggregation Network 
(E-ELAN). Meanwhile, the anchor-free model is 
presented in YOLOv8 for performance and accuracy 
improvement. 

YOLO was already applied for yield estimation tasks. 
For example, Wnag et al. (2022) obtained next accuracy 
results for yield estimation of litchi fruits (mAP): 
YOLOv4 - 82.87%, YOLOv5s - 88.9%, YOLOv5 
improved by them - 92.4% [15]. Meanwhile, Lyu et al. 
(2022) experimented with yield estimation of green citrus 
(mAP@0.5): YOLOv5 97.51% and improved YOLOv5-
CS 98.23% [16]. One more example, banana detection 
solution was presented by Fu et al. (2022): YOLOv3 - 93% 
mAP and YOLOv4  93.69% mAP [17]. However, despite 
the existing experiments, there is a restricted number of 
studied cultivars that is mainly related to the limited 
number of datasets or their open access availability. 
Another knowledge gap is the most suitable YOLO model 
for rapid prototyping of yield estimation solutions, 
because each YOLO architecture traditionally provides 
different models with different size and accuracy (Pareto 
front). 

Our study proposes two original things in this article: 
1) open dataset with natural images of pear trees in the 
fruiting stage, which we called Pear640; 
2) the accuracy comparison of YOLOv5-7.0 and YOLOv7 
templates for the rapid prototyping of yield estimation 
models. 

Additionally to our pear dataset Pear640, two open 
datasets were selected for experiment: grape dataset 
“WGISD” [18] and apple dataset “MinneApple” [19]. 
Considering to the YOLO architectures: YOLOv5n, 
YOLOv5m, YOLOv5l, YOLOv7 and YOLOv7-X models 
were selected. 

The YOLOv5m was the most suitable model (trade-off 
solution) for rapid development in our experiment. 
YOLOv5m achieved accuracy mAP@0.5 95% and 
mAP@0.5:0.95 57%. YOLOv7 showed the worst result in 
the cases of Pear640 and MinneApple, but YOLOv5n 
showed significantly smaller accuracy in the case of 
WGISD. Meanwhile, the accuracies of YOLOv5m and 
YOLOv5l were relatively similar, therefore YOLOv5m 
was more suitable due to its smaller size (latency). 

I. MATERIALS AND METHODS 

A. Pear640 Collection and Annotation 
Digital images of pear fruits were collected in the 

experimental site of the Institute of Horticulture (LatHort) 
with cultivars ‘Suvenirs’ and ‘Mramornaya’ on seedling 
rootstocks ‘Kazraushu’ with planting distances 4×5 m 
(500 trees per 1 ha). (Krimūnu parish, Dobeles district: 
56.610169, 23.305956). Collection of fruit images of 
‘Suvenirs’ and ‘Mramornaya’ was done at the end of 
August (105 days after full bloom) prior to the harvest. 

The collection of digital images was carried out using 
a digital photo camera Nikon D40 (Image size: 
3008×2000; 6.0 MP). 

The collection of images was carried out in field 
conditions, in the orchard at the distance from the tree 
planting point 2.5 m (middle of alleyway). The whole 
canopy of trees was photographed as separate objects. The 
images were taken in front of the tree (tree trunk, planting 
point), perpendicularly the tree row from the west side of 
rows (the rows of pear trees oriented from north to south) 
around noon (11:00–13:00) at clear sky natural light 
conditions. 

The dataset annotation process was performed 
manually using MakeSense annotation tool. The 
annotations consisted of bounding boxes around a pear in 
the photographs, indicating the location of the pears within 
the image. Then the annotated images 3008x2000 were 
automatically cropped out on 640x640 images with overlap 
30% and validated manually, because YOLOv5 and 
YOLOv7 work with input size 640x640, but image 
reduction was not possible due to small bounding boxes, 
which could achieve size until 25x25. Once all the images 
were annotated, they were stored in a YOLO format. The 
result dataset is available in Kaggle repository under CC-
BY license [20]. 

 
Fig. 1. Pear640 image example. 
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B. Comparison Datasets 
WGISD dataset [18] is a dataset consisting of 300 

images containing 4432 grape objects identified by 
bounding boxes (see Fig. 2). The dataset was used for 
several reasons. Firstly, it uses a format of annotation that 
is easy to adapt to the YOLO algorithms. Additionally, the 
dataset is diverse in terms of variety. The dataset consists 
of images taken of different grape varieties in different 
weather conditions. The images were not cropped, because 
objects were sufficiently large. 

 
Fig. 2. WGISD image example. 

MinneApple dataset [19] contains over 1000 images 
with over 41000 labelled instances of apples (see Fig. 3). 
This dataset was used for comparison for several reasons. 
Firstly, it contains a large number of images with also a lot 
of annotations. Additionally, the apple dataset is much 
more similar to pears than grapes. Images were cropped on 
640x640 due to small objects. The annotation was not 
improved to save possibility to compare results with other 
experiments. 

Experiment Design 
In this experiment, we utilized YOLOv5 [21] and 

YOLOv7 [22] models, specifically YOLOv5n, 
YOLOv5m, YOLOv5l, YOLOv7 and YOLOv7-X. 

The experiment was conducted on an NVIDIA RTX 
2070 GPU, which provided sufficient performance for 
training and testing the models. 

 
Fig. 3. MinneApple image example. 

Pear640 dataset was randomly distributed across 
training, validation and test folders using the Python 
random shuffle method. This was repeated 5 times to 

generate five distinctive data splits, ensuring that the 
images in each data split contained the same images but 
with varying locations across the three folders. The data 
splits were 70% of the images would be in the train folder, 
20% of the images would be in the validation folder and 
10% images would be in the test folder. This was also then 
repeated for WGISD and MinneApple datasets 
respectively. 

The augmentation was applied in the experiment: we 
modified scaling, mix-up and shearing to 0, rotation 
parameter to 30o and increased mosaic to 1, which takes 
multiple images and combines them into one. 

For each data split, YOLOv5 and YOLOv7 models 
were trained independently, resulting in five trained models 
for one specific model type. Subsequently, the trained 
models were then tested with the test images on their 
respective data splits to evaluate their performance and 
ensure an extensive comparison. 

RESULTS AND DISCUSSION 
If results are analysed in the scope of one dataset, the 

type of YOLO model can increase accuracy until 8.2% 
(Tab. 1, median). In the case of our dataset (Pear640), it 
was not so impressive - only 4.1% (Tab. 3, median). The 
analysis of YOLO models among different datasets showed 
the more interesting distribution of obtained accuracies (see 
Tab. 2-3, 
Fig. 4). YOLOv7 showed the worst result in the cases of 
Pear640 and MinneApple, but YOLOv5n showed 
significantly smaller accuracy in the case of WGISD. 
Meanwhile, the accuracies of YOLOv5m and YOLOv5l 
were relatively similar, but YOLOv5m has smaller size 
(latency). Therefore, YOLOv5m was the most suitable 
model (trade-off solution) for the rapid development in our 
experiment. 

YOLOv5m showed next accuracy: mAP@0.5 95% and 
mAP@0.5:0.95 56%, precision 93%, recall 90%. 

Analysing results with WGISD, it can be mentioned, 
that Santos et al. (2020) trained Mask R-CNN with 
accuracy 71.9% mAP@0.5 [18]. Thomas et al. (2023) 
completed similar study applying YOLOv5 models for 
WGISD object detection. They obtained sufficiently 
similar results: YOLOv5n - 89.4%, YOLOv5m - 89.5%, 
YOLOv5l - 90.5% [23]. 

Considering to MinneApple dataset, its authors 
proposed achieved accuracy equal to 77.5% mAP@0.5 by 
using Mask RCNN method [19]. Meili et al. (2022) 
presents BFP Net model, which provides 84.6% mAP@0.5 
accuracy [24]. Meanwhile, Li et al. (2021) compared 
exactly YOLO models: YOLOv4 CspdarkNet53 - 90.53% 
and YOLOv5s - 80.11% mAP@0.5 [25]. In our 
experiment, the better results were obtained for all 
YOLOv5 models, but YOLOv7 provided close results. The 
better results can be explained by the image crop on 
640x640, that was intuitive for our team. At the same time, 
other authors mentioned problems with small objects. 

Experiments with pear detection were completed by 
other authors too. Sun at al. (2023) proposed the modified 
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YOLOv5 model called YOLO-P, which was obtained by 
completing redevelopment of the backbone part for orchard 
picking robots. YOLO-P achieved 97.6% mAP@0.5 and 
39.4% volume improvement and was tested on pear dataset 
[26]. Li et al. (2022) presented another modified YOLOv5 
model called YOLOv5s-FP, which was tested on a pear 
dataset. It achieved 96.12% mAP@0.5. The modification 
was oriented to increase image processing speed [27]. 

Summarising, the yield detection accuracy 90% 
mAP@0.5 is a relatively good achievement at this moment, 
which can be obtained in the rapid development stage. 
Considering to our experiment, YOLOv5m is preferable 
model for the rapid development, because YOLOv7 was 
unstable, YOLOv5l provided similar results to YOLOv5m, 
but YOLOv5n in the case of WGISD showed accuracy 
smaller than 80%. Speaking about studies related to yield 
monitoring, artificial intelligence engineers try to optimise 
the backbone of YOLO architecture to minimise latency for 
edge solutions (unmanned aerial vehicles, unmanned 
ground vehicles, fruit pickers, mobiles, etc.). However, it 
may be more suitable to simply retrain YOLO backbone on 
the huge dataset of rural content domain comparable with 
ImageNet and COCO collections. That is challenging at 
this moment, because there are too few public agriculture 
datasets as well as selected categories must be well 
planned. 

CONCLUSIONS 
In this article we presented our public dataset Pear640, 

which is available in Kaggle under CC-BY licence. 

Completing the pilot experiments directed to develop 
yield estimation solutions, we wanted to identify the 
suitable architecture and model for the rapid development 

of fruit detection. Our pilot experiment showed that 
YOLOv5m is a preferable model for the rapid development 
of yield estimation solutions. The best trained YOLOv5m 
model showed the following results for the Pear640 
dataset: mAP@0.5 95%, mAP@0.5:0.95 56%, precision 
93%, recall 90%. 

TABLE 1 EXPERIMENT RESULTS WITH WGISD 

YOLO  Test Dataset WGISD (mAP@0.5) 
v5n v5m v5l v7 v7-X 

min 0.799 0.833 0.842 0.880 0.861 
mean 0.831 0.877 0.879 0.899 0.902 
median 0.825 0.890 0.889 0.888 0.907 
max 0.881 0.918 0.930 0.933 0.932 

TABLE 2 EXPERIMENT RESULTS WITH MINNEAPPLE 

YOLO  Test Dataset MinneApple (mAP@0.5) 
v5n v5m v5l v7 v7-X 

min 0.885 0.894 0.894 0.802 0.812 
mean 0.891 0.903 0.905 0.881 0.865 
median 0.890 0.904 0.907 0.896 0.883 
max 0.896 0.909 0.914 0.912 0.914 

TABLE 3 EXPERIMENT RESULTS WITH PEAR640 

YOLO  Test Dataset Pear640 (mAP@0.5) 
v5n v5m v5l v7 v7-X 

min 0.927 0.932 0.936 0.834 0.737 
mean 0.935 0.941 0.940 0.915 0.874 
median 0.938 0.940 0.940 0.928 0.897 
max 0.943 0.951 0.942 0.955 0.945 

 
Fig. 4. Box-plot diagram of YOLO model accuracy (mAP@0.5).

ACKNOWLEDGEMENT 
This research is funded by the Latvian Council of 

Science, project “Development of autonomous unmanned 
aerial vehicles based decision-making system for smart 
fruit growing”, project No. lzp-2021/1-0134. 

REFERENCES 
[1] G. J. Silva, T.M. Souza, R.L. Barbieri and A.C. de Oliveira, 

“Origin, domestication, and dispersing of pear (Pyrus spp.),” Adv. 
Agricult., 2014. Available: https://doi.org/10.1155/2014/541097 

[2] A. Zarei, J. Erfani-Moghadam and H. Jalilian, “Assessment of 
variability within and among four Pyrus species using multivariate 
analysis,” Flora, vol. 250, pp. 27-36, 2019. Available: 
https://doi.org/10.1016/j.flora.2018.11.016 

[3] FAOSTAT, Food and agriculture data. [Online] Available: 
http://www.fao.org/faostat/[Accessed March 21, 2023]. 

[4] G. Lācis, I. Kota-Dombrovska, K. Kārkliņa, B. Lāce, “Genetic 
diversity and relatedness of Latvian Pyrus germplasm assessed by 
a set of SSR markers,” Proceedings of the Latvian Academy of 
Sciences. Section B, vol. 76, no. 4 (739), pp. 438–447, 2022. 
Available: https://doi.org/10.2478/prolas-2022-0068 

https://doi.org/10.1155/2014/541097
https://doi.org/10.1016/j.flora.2018.11.016
http://www.fao.org/faostat/
https://doi.org/10.2478/prolas-2022-0068


Environment. Technology. Resources. Rezekne, Latvia 
Proceedings of the 14th International Scientific and Practical Conference. Volume 1, 81-85 

85 

[5] H. Cheng, L. Damerow, Y. Sun and M. Blanke, “Early Yield 
Prediction Using Image Analysis of Apple Fruit and Tree Canopy 
Features with Neural Networks,” J. Imaging, vol. 3, no. 1, p. 6+, 
Jan. 2017. Available: https://doi.org/10.3390/jimaging3010006 

[6] F. Winter, “Modelling the biological and economic development of 
an apple orchard,” in Proceedings of the  III International 
Symposium on Research and Development on Orchard and 
Plantation Systems, Montpellier, May 21-26, 1984, France. Place 
of publication: Acta Hortic, 1986. Available: 
https://doi.org/10.17660/ActaHortic.1986.160.40 

[7] R. Črtomir, C. Urška, T. Stanislav, S. Denis, P. Karmen, M. 
Pavlovič, V. Marjan, “Application of Neural Networks and Image 
Visualisation for Early Forecast of Apple Yield,” Erwerbs-
Obstbau,  vol. 54, pp. 69–76, 2012. Available: 
https://doi.org/10.1007/s10341-012-0162-y 

[8] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You Only Look 
Once: Unified, Real-Time Object Detection,” in Proceedings of the 
2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. 
Place of publication: IEEE, 2016. Available: 
https://doi.org/10.1109/CVPR.2016.91 

[9] A. Bochkovskiy, C.-Y. Wang, H.-Y. Liao, “YOLOv4: Optimal 
Speed and Accuracy of Object Detection,” arXiv, Apr 23, 2020. 
[Online] Available: https://arxiv.org/pdf/2004.10934.pdf 
[Accessed: Mar 17, 2023] 

[10] U. Nepal, H. Eslamiat, “Comparing YOLOv3, YOLOv4 and 
YOLOv5 for Autonomous Landing Spot Detection in Faulty 
UAVs,” Sensors, vol. 22, no. 2, p. 464, Jan. 2022, Available: 
https://doi.org/10.3390/s22020464 

[11] P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, “A Review of Yolo 
Algorithm Developments,” Procedia Computer Science, vol. 199, 
pp. 1066-1073, 2022. Available: 
https://doi.org/10.1016/j.procs.2022.01.135 

[12] C.-Y. Wang, I.-H. Yeh, H.-Y. M. Liao, “You only learn one 
representation: Unified network for multiple tasks,” arXiv, May 10, 
2021. [Online] Available: https://arxiv.org/pdf/2105.04206.pdf 

[13] C.-Y. Wang, A. Bochkovskiy, H.-Y. Liao, “YOLOv7: Trainable 
bag-of-freebies sets new state-of-the-art for real-time object 
detectors,” arXiv, Jul 6, 2022. Available:  
https://arxiv.org/pdf/2207.02696.pdf 

[14] J. Solawetz, “What is YOLOv8? The Ultimate Guide,” Jan 11, 
2023. [Online] Available: https://blog.roboflow.com/whats-new-
in-yolov8/ [Accessed: Mar 17, 2023] 

[15] L. Wang, Y. Zhao, Z. Xiong, S. Wang, Y. Li, Y. Lan, “Fast and 
precise detection of litchi fruits for yield estimation based on the 
improved YOLOv5 model,” Frontiers in Plant Science, vol. 13, 
2022. Available: https://doi.org/10.3389/fpls.2022.965425 

[16] S. Lyu, R. Li, Y. Zhao, Z. Li, R. Fan, S. Liu, “Green Citrus 
Detection and Counting in Orchards Based on YOLOv5-CS and AI 

Edge System,” Sensors, vol. 22, no. 2, p. 576+, 2022. Available: 
https://doi.org/10.3390/s22020576 

[17] L. Fu, Z. Yang, F. Wu, X. Zou, J. Lin, Y. Cao, J. Duan, “YOLO-
Banana: A Lightweight Neural Network for Rapid Detection of 
Banana Bunches and Stalks in the Natural Environment,” 
Agronomy, vol. 12, no. 2, p. 391+, 2022. Available: 
https://doi.org/10.3390/agronomy12020391 

[18] T.T. Santos, L.L. de Souza, A.A. dos Santos, S. Avila, “Grape 
detection, segmentation, and tracking using deep neural networks 
and three-dimensional association,” Computers and Electronics in 
Agriculture, vol. 170, 2020. Available: 
https://doi.org/10.1016/j.compag.2020.105247 

[19] N. Häni, P. Roy and V. Isler, "MinneApple: A Benchmark Dataset 
for Apple Detection and Segmentation," in IEEE Robotics and 
Automation Letters, vol. 5, no. 2, pp. 852-858, April 2020. 
Available: https://doi.org/10.1109/LRA.2020.2965061 

[20] lzp-2021/1-0134, Pear640, 2023. [Online]. Available: 
https://www.kaggle.com/datasets/projectlzp201910094/pear640 
[Accessed: Mar 24, 2023] 

[21] Ultralytics, YOLOv5-7.0 GitHub repository. [Online] Available: 
https://github.com/ultralytics/yolov5 [Accessed: Jan 30, 2023] 

[22] YOLOv7 GitHub repository. [Online] Available: 
https://github.com/WongKinYiu/yolov7 [Accessed: Feb 20, 2023] 

[23] T.A. Ciarfuglia, I.M. Motoi, L. Saraceni, M. Fawakherji, A. 
Sanfeliu, D. Nardi, “Weakly and semi-supervised detection, 
segmentation and tracking of table grapes with limited and noisy 
data, Computers and Electronics in Agriculture,” vol. 205, 2023. 
Available: https://doi.org/10.1016/j.compag.2023.107624 

[24] M. Sun, L. Xu, X. Chen, Z. Ji, Y. Zheng, W. Jia, “BFP Net: 
Balanced Feature Pyramid Network for Small Apple Detection in 
Complex Orchard Environment,” Plant Phenomics, vol. 2022, 
2022. Available: https://doi.org/10.34133/2022/9892464 

[25] Y. Li, C. Lei, Z. Xue, Z. Zheng, Y. Long, “A Comparison of YOLO 
Family for Apple Detection and Counting in Orchards,” World 
Academy of Science, Engineering and Technology, International 
Journal of Computer and Systems Engineering, vol. 15, no. 5, pp. 
334 – 343, 2021. Available: 
https://publications.waset.org/10012056/a-comparison-of-yolo-
family-for-apple-detection-and-counting-in-orchards 

[26] H. Sun, B. Wang, J. Xue, “YOLO-P: An efficient method for pear 
fast detection in complex orchard picking environment,” Frontiers 
in Plant Science, vol. 13, 2023. Available: 
https://doi.org/10.3389/fpls.2022.1089454 

[27] Y. Li, Y. Rao, X. Jin, Z. Jiang, Y. Wang, T. Wang, F. Wang, Q. 
Luo, L. Liu, “YOLOv5s-FP: A Novel Method for In-Field Pear 
Detection Using a Transformer Encoder and Multi-Scale 
Collaboration Perception,” Sensors, vol. 23, no. 1, p. 30+, Dec. 
2022, Available: https://doi.org/10.3390/s23010030

 

https://doi.org/10.3390/jimaging3010006
https://doi.org/10.17660/ActaHortic.1986.160.40
https://doi.org/10.1007/s10341-012-0162-y
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/pdf/2004.10934.pdf
https://doi.org/10.3390/s22020464
https://doi.org/10.1016/j.procs.2022.01.135
https://arxiv.org/pdf/2105.04206.pdf
https://arxiv.org/pdf/2207.02696.pdf
https://blog.roboflow.com/whats-new-in-yolov8/
https://blog.roboflow.com/whats-new-in-yolov8/
https://doi.org/10.3389/fpls.2022.965425
https://doi.org/10.3390/s22020576
https://doi.org/10.3390/agronomy12020391
https://doi.org/10.1016/j.compag.2020.105247
https://doi.org/10.1109/LRA.2020.2965061
https://www.kaggle.com/datasets/projectlzp201910094/pear640
https://github.com/ultralytics/yolov5
https://github.com/WongKinYiu/yolov7
https://doi.org/10.1016/j.compag.2023.107624
https://doi.org/10.34133/2022/9892464
https://publications.waset.org/10012056/a-comparison-of-yolo-family-for-apple-detection-and-counting-in-orchards
https://publications.waset.org/10012056/a-comparison-of-yolo-family-for-apple-detection-and-counting-in-orchards
https://doi.org/10.3389/fpls.2022.1089454
https://doi.org/10.3390/s23010030

	Introduction
	I. MATERIALS AND METHODS
	A. Pear640 Collection and Annotation
	B. Comparison Datasets
	Experiment Design

	RESULTS AND DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENT

